K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

giúp câu c

25 tháng 1 2022

a, Xét tam giác OAB cân tại O, có OM là đường trung tuyến 

=> OM đồng thời là đường phân giác 

=> ^AOM = ^BOM 

Xét tam giác OAC và tam giác OBC có : 

^AOC = ^BOC ( cmt ) 

OA = OB = R 

OC _ chung 

Vậy tam giác OAC = tam giác OBC ( c.g.c ) 

=> ^OAC = ^OBC = 900

Xét (O) có B thuộc (O) ; BC thuộc (O) ; ^OBA = 900

=> BC là tiếp tuyến đường tròn (O) với B là tiếp điểm 

b, Ta có : AB = AC ( tc tiếp tuyến cắt nha ) 

OA = OB = R 

=> OC là trung trực đoạn AB 

và OC giao AB = M 

Xét tam giác AOC vuông tại A, đường cao AO

OM = MD = OD/2 = R/2 

Theo Pytago tam giác AMO vuông tại M

\(AM=\sqrt{AO^2-MO^2}=\sqrt{R^2-\dfrac{R^2}{4}}=\dfrac{\sqrt{3}R}{2}\)

Áp dụng hệ thức : \(\dfrac{1}{AM^2}=\dfrac{1}{AO^2}+\dfrac{1}{AC^2}\)

bạn thay vào tính nốt nhé 

 

loading...

loading...

loading...

d: \(SA^2=SB\cdot SC\)

\(SE^2=SB\cdot SC\)

=>SA=SE

Xét ΔOAS và ΔOES có

OA=OE

SA=SE

OS chung

Do đó: ΔOAS=ΔOES

=>\(\widehat{OAS}=\widehat{OES}\)

mà \(\widehat{OAS}=90^0\)

nên \(\widehat{OES}=90^0\)

=>E nằm trên đường tròn đường kính SO

mà S,A,O,D cùng thuộc đường tròn đường kính SO(cmt)

nên E nằm trên đường tròn (SAOD)

a: M là điểm chính giữa của cung BC

=>\(sđ\stackrel\frown{MB}=sđ\stackrel\frown{MC}\) và MB=MC

Xét (O) có

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BM}\)

Do đó: \(\widehat{CAM}=\widehat{BAM}\)

=>AM là phân giác của góc BAC

b: Xét (O) có

\(\widehat{SAC}\) là góc tạo bởi tiếp tuyến AS và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{SAC}=\widehat{ABC}=\widehat{SBA}\)

Xét ΔSAC và ΔSBA có

\(\widehat{SAC}=\widehat{SBA}\)

\(\widehat{ASC}\) chung

Do đó: ΔSAC đồng dạng với ΔSBA

=>\(\dfrac{SA}{SB}=\dfrac{SC}{SA}\)

=>\(SA^2=SB\cdot SC\)

c: Xét (O) có

góc CKA là góc có đỉnh ở trong đường tròn chắn cung AC và BM

=>\(\widehat{CKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{BM}\right)\)

=>\(\widehat{SKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{CM}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)

mà \(\widehat{SAK}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)(góc tạo bởi tiếp tuyến SA và dây cung AM)

nên \(\widehat{SAK}=\widehat{SKA}\)

=>SA=SK

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(1)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại D

Xét tứ giác SAOD có

\(\widehat{SAO}+\widehat{SDO}=90^0+90^0=180^0\)

nên SAOD là tứ giác nội tiếp

=>S,A,D,O cùng thuộc một đường tròn