K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 1 2021

Bạn tự vẽ hình nhé. 

Vì \(I\)là trung điểm \(NM\)nên \(OI\perp MN\).

Ta có: 

\(BM.BN=\left(BI-MI\right)\left(BI+IN\right)=\left(BI-MI\right)\left(BI+MI\right)=BI^2-MI^2\).

\(=BI^2-\left(OM^2-OI^2\right)=BI^2+OI^2-OM^2=OB^2-R^2\)(không đổi)

4 tháng 7 2018

a, HS tự làm

b, Chú ý  O K M ^ = 90 0  và kết hợp ý a) => A,M,B,O,K ∈ đường tròn đường kính OM

c, Sử dụng hệ thức lượng trong tam giác vuông OAM ( hoặc có thể chứng minh tam giác đồng dạng)

d, Chứng minh OAHB là hình bình hành và chú ý A,B thuộc (O;R) suy ra OAHB là hình thoi

e, Chứng minh OH ⊥ AB, OMAB => O,H,M thẳng hàng

14 tháng 12 2021

1 vì K là trung điểm NP nên OK vuông góc NP ( Quan hệ đường kính và dây cung ) suy ra góc OKM=90 độ .Theo tính chất tiếp tuyến ta có góc OAM=90 độ , góc OBM = 90 độ như vậy K,A,B cùng nhìn OM dưới một góc 90 độ nên cùng nằm trên dường tròn đường kính OM . vậy ..........

a: ΔONP cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)NP tại K

Ta có: \(\widehat{OAM}=\widehat{OBM}=\widehat{OKM}=90^0\)

=>O,A,M,B,K cùng thuộc đường tròn đường kính OM

b: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot OM=OA^2=R^2\)

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot IM=IA^2\)

c: AC\(\perp\)BM

OB\(\perp\)BM

Do đó: OB//AC

=>OB//AH

BD\(\perp\)MA

OA\(\perp\)MA

Do đó: BD//OA

=>BH//OA

Xét tứ giác OBHA có

OB//HA

OA//HB

Do đó: OBHA là hình bình hành

Hình bình hành OBHA có OB=OA

nên OBHA là hình thoi

d: OBHA là hình thoi

=>OH là đường trung trực của BA

mà M nằm trên đường trung trực của BA(cmt)

nên O,H,M thẳng hàng

câu a

 Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A. 
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1) 
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2) 
Từ (1) và (2) => đpcm

mấy câu còn lại bó tay

a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB

b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2

=>góc MOA=60 độ

sđ cung AB=2*60=120 độ

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=MH*MO

 

12 tháng 3 2023

Giúp mình giải câu e với ạ

9 tháng 5 2023

lồng

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:

\(AH\cdot AO=AB^2\)(1)

Xét (O) có

\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD

\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ABD}=\widehat{AEB}\)

Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔAEB(g-g)

Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AE\cdot AD\)(2)

Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)

 

6 tháng 3 2021

phần c ???