K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

a)                       

 Ta có:  = 900 (góc nội tiếp chắn nửa đường tròn)

      = 900  (Do kề bù với  )      

Theo gt  nên   = 900             

 Tứ giác ACHD có   +    =                                              

Nên Tứ giác ACHD nội tiếp được đường tròn đường kính CD .

Xét hai tam giác vuông  và  

Có  và  chung                         

nên suy ra                 

Tam giác BPD có BH, PA là các đường cao cắt nhau tại C nên C là trực tâm của tam giác                                         

Mặt khác:   = 900  (góc nội tiếp chắn nửa đường tròn)       

Qua một điểm  ngoài đường thẳng ta chỉ kẻ được một đường thẳng vuông góc với đường thẳng đã cho. Do đó  từ (1) và (2) .

Vậy D, C, I cùng nằm trên 1 đường thẳng.      

* Xét tam giác ACD có: AB = AP (gt),  = 900 nên DBAP vuông cân tại A.

    = 450    = 450  hay  = 450 (cùng phụ  = 450)       

*  DABC vuông tại A  có   = 300 (gt)

Nên AC = BC.sin300 = 2R .0,5 = R                                         

*DACD vuông tại A có  = 450  Nên                          

* Tứ giác ACHD nội tiếp đường trên đường  kính CD Diện tích của hình tròn ngoại tiếp tứ giác ACHD là:   (đvdt)

24 tháng 3 2016

a)                

 Ta có:  = 900 (góc nội tiếp chắn nửa đường tròn)

      = 900  (Do kề bù với  )      

Theo gt  nên   = 900             

 Tứ giác ACHD có   +    =                                              

Nên Tứ giác ACHD nội tiếp được đường tròn đường kính CD .

Xét hai tam giác vuông  và  

Có  và  chung                         

nên suy ra                 

Tam giác BPD có BH, PA là các đường cao cắt nhau tại C nên C là trực tâm của tam giác                                         

Mặt khác:   = 900  (góc nội tiếp chắn nửa đường tròn)       

Qua một điểm  ngoài đường thẳng ta chỉ kẻ được một đường thẳng vuông góc với đường thẳng đã cho. Do đó  từ (1) và (2) .

Vậy D, C, I cùng nằm trên 1 đường thẳng.      

* Xét tam giác ACD có: AB = AP (gt),  = 900 nên DBAP vuông cân tại A.

    = 450    = 450  hay  = 450 (cùng phụ  = 450)       

*  DABC vuông tại A  có   = 300 (gt)

Nên AC = BC.sin300 = 2R .0,5 = R                                         

*DACD vuông tại A có  = 450  Nên                          

* Tứ giác ACHD nội tiếp đường trên đường  kính CD Diện tích của hình tròn ngoại tiếp tứ giác ACHD là:   (đvdt)

Em kham khảo link này nhé.

Câu hỏi của Trần Đức Thắng - Toán lớp 9 - Học toán với OnlineMath

24 tháng 3 2017

1)xét tam giác ABC và tam giác HBC có

góc BAC=PHC=90o

đỉnh C chung

=>2 tam giác đồng dạng

=>PH/AB=PC/BC   (1)

mà AB =PA  (2)

=> tam giác ABC = tam giác ADP ( 2 tam giác vuông có 1 cạnh bằng nhau )

=>BC=PD  (3)

từ (1)(2)(3) =>PH/PA=PC/PD=>PA.PC=PH.PD (dpcm)

2) ta có

góc BHP= góc BIC=90o ( chắn nửa hình tròn ) => tứ giác BIDH nội tiếp

=> góc IBH=HCA

=>góc IDP+góc PDC =180o => I,C,D thẳng hàng

CHÚC BẠN HỌC GIỎI

K MÌNH NHÉ

19 tháng 4 2019

Bạn ơi theo mk đề câu b bị sai ạ

đề chắc phải là PC.PA=PH.PD

a.Xét tứ giác ACHD có:

DAC=DHC =90 

mà 2 góc nằm ở vị trí đối nhau nên Tứ giác ACHD nt

b. Xét tam giác PAD và tam giác PHC có :

HPC chung

PAD=PHC=90(gt)

nên  tam giác PAD đồng dạng với tam giác PHC 

nên ta đc đpcm

c.Xét tam giác PCB có BA vuông góc với PC(gt)

                                   PH vuông góc với BC(gt)

mà BA cắt Ph tại D 

nên D là trực tâm của tam giác PBC hay CD vuông góc với PB 

mà CI vuông góc với BA (gt)

nên C,I,D thẳng hàng

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu