K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

Hình vẽ:

a, \(AH\perp MC\Rightarrow AH=HD\)

Ta có \(\left\{{}\begin{matrix}OA=OD\\HA=HD\end{matrix}\right.\Rightarrow OM\) là trung trực của \(AD\)

\(\Rightarrow MA=MD\Rightarrow\Delta OAM=\Delta ODM\left(c-c-c\right)\)

\(\Rightarrow MD\perp OD\)

Hay MD là tiếp tuyến

b, \(\Delta OAM\) vuông tại A

\(\Rightarrow O;A;M\) thuộc đường tròn đường kính OM

Lại có \(\Delta ODM\) vuông tại D

\(\Rightarrow O;D;M\) thuộc đường tròn đường kính OM

Dễ chứng minh được B là trung điểm OM

\(\Rightarrow M;A;O;D\in\left(B;R\right)\)

c, Vì \(\widehat{BAC}=90^o\Rightarrow\Delta BAC\) vuông tại A

\(\Rightarrow HB.HC=HA^2\)

Mà \(\Delta OAM\) vuông tại A \(\Rightarrow HM.HO=HA^2\)

\(\Rightarrow HB.HC=HM.HO\)

1) Xét (O) có 

DC là tiếp tuyến có C là tiếp điểm

DA là tiếp tuyến có A là tiếp điểm

Do đó: DC=DA

Xét (O) có 

EC là tiếp tuyến có C là tiếp điểm

EB là tiếp tuyến có B là tiếp điểm

Do đó: EC=EB

Ta có: DE=DC+CE(C nằm giữa D và E)

nên DE=DA+EB(đpcm)