Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vẽ hình
O x y t z
Ta có: \(\widehat{xOy}+\widehat{yOt}+\widehat{zOt}+\widehat{xOz}=360^o\)(Tổng các góc trong không có điểm trong chung )
\(\Rightarrow\widehat{xOy}+90^o+\widehat{zOt}+90^o=360^o\)
\(\Rightarrow\widehat{xOy}+\widehat{zOt}=360^o-90^o-90^o\)
\(\Rightarrow\widehat{xOy}+\widehat{zOt}=180^o\)
Vậy \(\widehat{xOy}+\widehat{zOt}=180^o\)
Bài 2:
O B A C D x 100 độ y
A) Ta có: \(\widehat{AOB}=100^o,\widehat{AOC}=90^o,\widehat{BOD}=90^o\)
\(\Rightarrow\widehat{COD}=360^o-\left(\widehat{AOB}+\widehat{AOC}+\widehat{BOD}\right)\)
\(=360^o-\left(100^o+90^o+90^o\right)=360^o-280^o=80^o\)
Ox là tia phân giác của \(\widehat{AOB}\)nên \(\widehat{xOA}=\frac{\widehat{AOB}}{2}=\frac{100^o}{2}=50^o\)
Oy là tia phân giác của \(\widehat{COD}\)nên \(\widehat{COy}=\frac{\widehat{COD}}{2}=\frac{80^o}{2}=40^o\)
Do đó: \(\widehat{xOy}=\widehat{xOA}+\widehat{AOC}+\widehat{COy}=50^o+90^o+40^o\)
Hay \(\widehat{xOy}=180^o\)
=> Ox và Oy là hai tia đối nhau ( đpcm )
b) Ta có: \(\widehat{xOC}=\widehat{xOA}+\widehat{AOC}=50^o+90^o=140^o\)
\(\widehat{BOy}=\widehat{BOD}+\widehat{DOy}=90^o+40^o=130^o\)
1. x O x' y y'
Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)
\(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)
Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)
1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)
=> \(2.\widehat{x'Oy}=210^0\)
=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)
=> \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)
2. O x y x' y' m m'
Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)
\(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì Om là tia p/giác)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\)
=> Om' nằm giữa Ox' và Oy'
=> Om' là tia p/giác của góc x'Oy'
b) Tự viết
x t m n o y z
Ta có : \(\widehat{tOn}+\widehat{tOx}+\widehat{xOm}=180^o\)
\(\widehat{mOy}+\widehat{yOz}+\widehat{zOn}=180^o\)
\(\Rightarrow\widehat{nOt}+\widehat{xOt}+\widehat{xOm}=\widehat{zOn}+\widehat{yOz}+\widehat{mOy}\) ( vì \(\widehat{tOn}=\widehat{nOz}\) và \(\widehat{xOm}=\widehat{mOy}\) ) nên \(\widehat{xOt}=\widehat{yOz}\)
Vì \(\widehat{xOt}\) đối đỉnh với \(\widehat{yOz}\) nên Ot là tia đối của Ox mà On là tia đổi của Om vậy \(\widehat{tOn}\) và \(\widehat{mOy}\) là hai góc đối đỉnh
XOZ + ZOT + TOY + YOX =360 mà trong đó đã có 2 góc vuông là XÔZ và TOY nên ZOT +XOY = 360-90-90=180
theo đề tia phân giác 2 góc ZOT, XOY ta lại có: ZON + NOT + XOM + MOY= 180
HAY: 2ZON + 2XOM= 180 <=> 2(ZON + XOM) =180
<=>ZON + XOM =180 : 2= 90
Cộng ZON + ZOX + XOM = 180 (*). OM và ON là 2 tia có chung gốc O và tạo vs nhau 1 góc = 180đ nên chúng là 2 tia đối nhau
O x y m z t
Vì Om là tia phân giác góc xOy nên :
góc xOm = góc mOy
mà góc zOt = góc xOm ( vì đối đỉnh )
=> góc zOt = góc mOy
Vậy góc zOt = góc mOy .
Học tốt