Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABK=1/2*sđ cung AK
góc CBK=1/2*sđ cung CK
mà góc ABK=góc CBK
nên sđ cung AK=sđ cung CK
=>OK vuông góc AC
c: Xét ΔKCM và ΔKBC có
góc KCM=góc KBC
góc CKM chung
=>ΔKCM đồng dạng với ΔKBC
=>KC/KB=KM/KC
=>KC^2=KB*KM
câu d:
Tam giác BCF nội tiếp (O;BC/2) có cạnh BC là đường kính
=> Tam giác BCF vuông tại F
=>góc BFC=90 độ
Xét 2 tam giác: tam giác CHF và tam giác CFB có:
góc C chung
góc CHF=góc CFB (=90 độ)
Do đó, tam giác CHF đồng dạng với tam giác CFB (g.g)
=> góc CFH=góc CBF (1)
Tứ giác ABFC nội tiếp (O;BC/2)
=> góc CFH=góc ABC (cùng chắn cung AC) (2)
Từ (1) và (2)=> góc CBF=góc ABC (3)
Mà tia BC nằm giữa tia AB và BF (4)
Từ (3) và (4)=> BC là tia phận giác của góc ABF (đpcm)
b: ΔNAI cân tại N
=>NA=NI
Xét ΔANK và ΔINK có
NA=NI
góc ANK=góc INK
NK chung
=>ΔANK=ΔINK
=>góc AKN=góc IKN
=>góc IKN=1/2(sđ cung MC+sđ cung AN)
=1/2(sđ cung AM+sđ cung NB)
=góc AI'K(I' là giao của AB với MN)
=>IK//AI'
=>IK//AB