K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021
Con cặc mmmdkwkwkwkejdwj
22 tháng 3 2021

Ta có

\(AB=AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau)

\(\Rightarrow\Delta ABC\) cân tại A (1)

AO là phân giác của \(\widehat{BAC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm của đường tròn là phân iacs của góc tạo bởi 2 tiếp tuyến) (2)

Từ (1) và (2) \(\Rightarrow AH\perp BC\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AHE}=90^o\) (*)

Ta có

\(OM=ON\) (Bán kính (O)) \(\Rightarrow\Delta OMN\) cân tại O

Ta có \(IM=IN\) (Giả thiết) => ON là đường trung tuyến của tg OMN

\(\Rightarrow OE\perp AN\) (Trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AIE}=90^o\) (**)

Từ (*) và (**) => I và H cùng nhìn AE dưới hai góc bằng nhau và bằng 90 độ => I và H nằm trên đường tròn đường kính AE nên 4 điểm A;H;I;E cùng nằm trên 1 đường tròn

11 tháng 3 2022

Cho đường tròn tâm OO bán kính RR và một điểm AA nằm ngoài đường tròn. Kẻ một đường thẳng đi qua AA và không đi qua OO, cắt đường tròn tại hai điểm phân biệt MMNN (MM nằm giữa AA và NN). Từ AA vẽ hai tiếp tuyến ABAB và ACAC với (O)(O) (BBCC là hai tiếp điểm). Đường thẳng BCBC cắt AOAO tại HH. Gọi II là trung điểm của MNMN. Đường thẳng OIOI cắt đường thẳng BCBC tại EE. Chứng minh AHIEAHIE là tứ giác nội tiếp.

 

 

 theo gt, ta co: 

I là trung điểm của MNMN va MN la day cung cua (O)

 => OE vuong goc voi MN tai I

hay goc AIE= 90 (1)

Mat khac, ta lai co A nam ngoai (O);

AC va AB lan luot la cac tiep tuyen cua (O)

=> AO vuong goc voi BC

hay goc AHE = 90 (2)

tu (1) va (2) => tu giac AHIE noi tiep (vi co 2 goc ke bang nhau)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b; Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

6 tháng 12 2023

bạn ơi cho mình xin hình vẽ được không

 

30 tháng 11 2023

loading...  loading...  loading...  

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

" Đường thẳng MO cắt tâm O tại I và C mà I,C nằm giữa M, O"???

Đoạn này sai sai. Bạn xem lại đề.

Cho góc vuông $xOy$. Lấy các điểm $I$ và $K$ lần lượt trên tia $Ox$ và tia $Oy$. Vẽ đường tròn tâm $I$ bán kính $OK$ cắt tia $Ox$ tại $M$ ($I$ nằm giữa $O$ và $M$). Vẽ đường tròn tâm $K$ bán kính $OI$ cắt tia $Oy$ tại $N$ ($K$ nằm giữa $O$ và $N$). a) Chứng minh hai đường tròn $(I)$ và $(K)$ luôn cắt nhau. b) Tiếp tuyến tại $M$ của đường tròn $(I)$ và tiếp tuyến tại $N$ của đường tròn $(K)$ cắt...
Đọc tiếp

Cho góc vuông $xOy$. Lấy các điểm $I$ và $K$ lần lượt trên tia $Ox$ và tia $Oy$. Vẽ đường tròn tâm $I$ bán kính $OK$ cắt tia $Ox$ tại $M$ ($I$ nằm giữa $O$ và $M$). Vẽ đường tròn tâm $K$ bán kính $OI$ cắt tia $Oy$ tại $N$ ($K$ nằm giữa $O$ và $N$).
a) Chứng minh hai đường tròn $(I)$ và $(K)$ luôn cắt nhau.
b) Tiếp tuyến tại $M$ của đường tròn $(I)$ và tiếp tuyến tại $N$ của đường tròn $(K)$ cắt nhau tại $C$. Chứng minh tứ giác $OMCN$ là hình vuông.
c) Gọi giao điểm của hai đường tròn $(I)$, $(K)$ là $A$ và $B$. Chứng minh ba điểm $A$, $B$, $C$ thẳng hàng.
d) Giả sử $I$ và $K$ theo thứ tự di động trên các tia $Ox$ và $Oy$ sao cho $OI + OK =  a$ (không đổi). Chứng minh rằng đường thẳng $AB$ luôn đi qua một điểm cố định.

51
11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...  

a) Trong tam giác OIK có:

|OK  OI| < IK < |OK + OI| hay ∣R−r∣<IK<∣R+r∣Rr<IK<R+r.

Vậy hai đường tròn (I) và (K) luôn cắt nhau.
b) Dễ thấy tứ giác OMCN là hình chữ nhật (Tứ giác có 3 góc vuông). 
Mà OM = OI + IM = OI + OK;

      ON = OK + KN = OK + OI.
Vậy OM = ON hay hình chữ nhật OMCN là hình vuông.
c) Gọi giao điểm của BK và MC là L và giao điểm của AB với MC là P.
Tứ giác IBKO là hình chữ nhật. Suy ra IB = OK.
Tứ giác MLBI là hình vuông nên ML = BI, BL = OK.
Từ đó suy ra ΔBLP=ΔKOIΔBLP=ΔKOI.  Vì vậy LP = OI.
Suy ra MP = ON = MC. Hay điểm C trùng với P.
Suy ra ba điểm A, B, C thẳng hàng.
d) Nếu OI + OK = a (không đổi) thì OM = MC = a không đổi. Suy ra điểm C cố định.
Vậy đường thẳng AB luôn đi qua điểm C cố định.