K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3



12 tháng 4 2017

Hướng dẫn giải:

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:
a. Câu hỏi chưa rõ ràng

b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
 đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$

Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$

$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$

$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$

$\Rightarrow AB=2AH=\sqrt{3}R$

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Hình vẽ:

5 tháng 2 2021

Chỉ cần bạn vẽ góc ở tâm chắn cung mà bạn muốn có cùng số đo là được, tức  là khi bạn muốn có cung có số đo = 60 độ thì vẽ góc ở tâm chắn cung đó = 60 độ và tương tự với các góc còn lại

 

26 tháng 10 2023

a: ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

Xét ΔCOA có

CI vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔCOA cân tại C

Xét ΔCAO cân tại C có OA=OC

nên ΔCAO đều

=>\(\widehat{OCA}=60^0\)

Xét tứ giác OCAD có

I là trung điểm chung của OA và CD

Do đó: OCAD là hình bình hành

mà OC=OD

nên OCAD là hình thoi

=>\(\widehat{OCA}+\widehat{COD}=180^0\)

=>\(\widehat{COD}=120^0\)

Xét ΔOCD có \(\dfrac{CD}{sinCOD}=\dfrac{OC}{sinODC}\)

=>\(\dfrac{CD}{sin120}=\dfrac{R}{sin30}\)

=>\(CD=2R\cdot sin120=\sqrt{3}\cdot R\)

b: ΔOAC đều

=>\(\widehat{AOC}=60^0\)

c: \(\widehat{COD}=120^0\)

=>số đo cung nhỏ CD là 120 độ

Số đo cung lớn CD là:

360 độ-120 độ=240 độ

29 tháng 8 2019

a, Tính được OK =  R 2

b, Tính được  M O K ^ = 60 0 ; M O N ^ = 120 0

c, HS tự làm