Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
câu d:
Tam giác BCF nội tiếp (O;BC/2) có cạnh BC là đường kính
=> Tam giác BCF vuông tại F
=>góc BFC=90 độ
Xét 2 tam giác: tam giác CHF và tam giác CFB có:
góc C chung
góc CHF=góc CFB (=90 độ)
Do đó, tam giác CHF đồng dạng với tam giác CFB (g.g)
=> góc CFH=góc CBF (1)
Tứ giác ABFC nội tiếp (O;BC/2)
=> góc CFH=góc ABC (cùng chắn cung AC) (2)
Từ (1) và (2)=> góc CBF=góc ABC (3)
Mà tia BC nằm giữa tia AB và BF (4)
Từ (3) và (4)=> BC là tia phận giác của góc ABF (đpcm)
a) Xét (O):
BC là đường kính (gt).
\(A\in\left(O\right).\)
\(\Rightarrow AB\perp AC.\)
\(\Rightarrow\widehat{BAC}=90^o.\)
Xét tứ giác ABDF:
\(\widehat{BAF}=90^o\left(\widehat{BAC}=90^o\right).\)
\(\widehat{BDF}=90^o\left(FD\perp BC\right).\\ \Rightarrow\widehat{BDF}+\widehat{BAF}=90^o+90^o=180^o.\)
Mà 2 góc này đối nhau.
\(\Rightarrow\) Tứ giác ABDF nội tiếp đường tròn.
Xét tứ giác ADCE:
\(\widehat{CAE}=90^o\left(AB\perp AC\right).\\ \widehat{CDE}=90^o\left(ED\perp BC\right).\\ \Rightarrow\widehat{CAE}=\widehat{CDE}.\)
Mà 2 đỉnh A, D kề nhau cùng nhìn cạnh CE.
\(\Rightarrow\) Tứ giác ADCE nội tiếp đường tròn.
b) Ta có:
\(\widehat{AFE}=\widehat{CFD}\) (đối đỉnh).
Mà \(\widehat{CFD}+\widehat{FCD}=90^o(\Delta FDC\) vuông tại D).
\(\Rightarrow\widehat{AFE}+\widehat{FCD}=90^o.\)
Hay \(\widehat{AFE}+\widehat{ACB}=90^o.\)
Mà \(\widehat{ABC}+\widehat{ACB}=90^o(\Delta ABC\) vuông tại A).
\(\Rightarrow\widehat{ABC}=\widehat{AFE}.\)
B C O A D I