K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018
Gọi M là giao điểm của tia CO với cạnh AB. Vì O nằm trong ABC nêm M nằm giữa A và B => AM < AB Vẽ AH vuông góc với CM tai H ta có AC = AO => oh = oc ( qh giữa đường xiên và hình chiếu) mặt khác do HO < HM nên HC < HM => AC< AM => AC< AB do đó tam giác ABC không thể cân tại A
10 tháng 1 2017

OA = AC ( Vì thế OA ko thể bằng AB ) 

Sử dụng định lý 1 điểm nằm trong tam giác bằng 1 cạnh thì không bằng cạnh còn lại 

=) OA không bằng AB 

=) AB cx ko bằng AC 

=) Tam giác ABC không thể cân tại A

9 tháng 5 2020

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

2.

a) ta có:  \(\Delta OAB,\Delta OAC\) có diện tích bằng nhau và cùng đáy OA nên khoảng cách từ B , C kẻ đến OA 

nên BH=CK

b) gọi AK giao với BC tại M

Xét \(\Delta BHM\)và   \(\Delta CKM\)  có: 

..........

3.

a. xét tgiac ADC và tgiac ADB có

AD là cạnh chung

góc DAB = góc DAC(gt)

AB=AC(gt)

vậy tg ADC=tg ADB(c.g.c)

b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)

nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng

k mk nha thack ae

Bài 1  : 

a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tam giác  ABC cân tại A
mà AH là đường cao của tam giác ABC
=> AH là đg trung trực của tam giác ABC
=> BH = CH
=> BH = CH = \(\frac{1}{2}\)BC
Lại do BC = CE
=> CH = \(\frac{1}{2}\) CE
hay CE = \(\frac{2}{3}\) EH (2)
Từ (1); (2) => C là trọng tâm của tam giác ADE.

b) Có : AH là đường cao của ΔABC
⇒ Góc AHC = 90
⇒ Góc DHC = 90 (kề bù)
Xét ΔAHE và ΔDHE có:
+ AH = DH (gt)
+ Góc AHE = góc DHE = 90
+ HE chung
⇒ ΔAHE = ΔDHE
⇒ Góc EAH = góc EDH (1)
Lại có: Tia AC cắt DE tại M
Mà C là trong tâm của ΔADE
⇒ AM là trung tuyến của ΔADE
⇒ M là trung điểm của DE
Mà ΔDHE là tam giác vuông tại H (do DHE = 90 )
⇒ HM là đường trung tuyến của cạnh huyền
⇒ HM = DM = EM
⇒ ΔHMD cân tại M
⇒ Góc MHD = góc MDH (2)
Từ (1) + (2) ⇒ Góc EAH = góc MHD
Mà hai góc này là hai góc đồng vị
⇒ AE // HM (đpcm)

18 tháng 11 2021

?????

18 tháng 11 2021

Giúp mik đi

24 tháng 3 2015

 

hình vẽ ko đep you thông cảm nhá

xét 2 tam giác: MAC và NAB, có:

AC = AB ( tam giác ABC cân tại A)

A là góc chung

AM = AN ( vì tam giác ABC cân tại A => AB = AC, mà M và N là trung điểm của AB và AC => AM = AN)

vậy tam giác MAC = tam giác NAB ( c-g-c)

=> CM = BN ( 2 góc tương ứng) (điều phải chứng minh)

1 đúng nhé

 

24 tháng 3 2015

you tự vẽ hình nha

xét tam giác: ABN và ACM, ta có:

AB = AC ( vì tam giác ABC cân tại  A)

A là góc chung

vì tam giác ABC cân tại A nên AB = AC, mà M, N đều là trung điểm của AB và AC nên MA = NA

vậy tam giác ABN = tam giác ACM ( c-g-c)

BN = CM ( 2 cạnh tương ứng)       ( điều phải chứng minh )

1 đúng nhé