K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

$\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow MB\perp AD$

Tam giác $ABD$ có $MB\perp AD, DH\perp AB$ và $MB, DH$ cắt nhau tại $C$ nên $C$ là trực tâm tam giác $ABD$

$\Rightarrow AC\perp BD$

Lấy $E'$ là giao điểm của $AC$ và $BD$ thì $\widehat{AE'B}=90^0$

Như vậy: $\widehat{AMB}=\widehat{AE'B}$ và cùng nhìn cạnh $AB$ nên $AME'B$ là tứ giác nội tiếp

$\Rightarrow E'\in (O)$

Như vậy, $E'\in (O)$ và $E'\in AC$ nên $E'\equiv E$

$\Rightarrow B,E,D$ thẳng hàng.

Ta có: \(\widehat{MOH}=\widehat{MOB}=180^0-2\widehat{MBO}\)

Mặt khác: dễ thấy tứ giác $AMEB, CEBH$ nội tiếp nên: $\widehat{MEH}=\widehat{MEA}+\widehat{CEH}$

$=\widehat{MBA}+\widehat{CBH}=2\widehat{MBO}$

Từ đây suy ra: $\widehat{MOH}+\widehat{MEH}=180^0$

$\Rightarrow MOHE$ là tứ giác nội tiếp.

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ:

18 tháng 12 2023

Xét (O) có

EA,EC là các tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại M

Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)

nên CMON là hình chữ nhật

=>C,M,O,N cùng thuộc đường tròn đường kính CO(1)

Ta có: ΔCHO vuông tại H

=>H nằm trên đường tròn đường kính CO(2)

Từ (1),(2) suy ra C,M,O,N,H cùng nằm trên đường tròn đường kính CO

mà O cố định

nên đường tròn ngoại tiếp ΔHMN luôn đi qua điểm O cố định

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
2 tháng 12 2023

a) ta có: EM là tiếp tuyến của (O)

EA là tiếp tuyến của (O)

=>EM và EA là hai tiếp tuyến của (O) và cắt nhau tại E

=>EM=EA 

ta lại có OA=OM

=>OE là đường trung trức của AM

=>OE vuông góc với AM