K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Lời giải:
$\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow MB\perp AD$
Tam giác $ABD$ có $MB\perp AD, DH\perp AB$ và $MB, DH$ cắt nhau tại $C$ nên $C$ là trực tâm tam giác $ABD$
$\Rightarrow AC\perp BD$
Lấy $E'$ là giao điểm của $AC$ và $BD$ thì $\widehat{AE'B}=90^0$
Như vậy: $\widehat{AMB}=\widehat{AE'B}$ và cùng nhìn cạnh $AB$ nên $AME'B$ là tứ giác nội tiếp
$\Rightarrow E'\in (O)$
Như vậy, $E'\in (O)$ và $E'\in AC$ nên $E'\equiv E$
$\Rightarrow B,E,D$ thẳng hàng.
Ta có: \(\widehat{MOH}=\widehat{MOB}=180^0-2\widehat{MBO}\)
Mặt khác: dễ thấy tứ giác $AMEB, CEBH$ nội tiếp nên: $\widehat{MEH}=\widehat{MEA}+\widehat{CEH}$
$=\widehat{MBA}+\widehat{CBH}=2\widehat{MBO}$
Từ đây suy ra: $\widehat{MOH}+\widehat{MEH}=180^0$
$\Rightarrow MOHE$ là tứ giác nội tiếp.
Hình vẽ: