K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

A B O C D M S

Gọi (OMD) cắt (O) tại S khác D. Ta có OD = OS, suy ra (OD và (OS của đường tròn (OMD) bằng nhau

Hay ^OMD = ^OMS. Lại có ^MCO = 1800 - ^OCD = 1800 - ^ODC = ^MSO. Do đó ^MOC = ^MOS

Suy ra \(\Delta\)MCO = \(\Delta\)MSO (g.c.g). Vậy S đối xứng với C qua AB, mà C và AB đều cố định nên S cố định

Khi đó (OMD) luôn đi qua 2 điểm cố định là S và O (đpcm).

13 tháng 10 2019

A B O C M D K

gọi  K là điểm đối xứng với C qua AB; C cố định nên K cũng cố định

ta sẽ chứng minh K thuộc đường tròn ngoại tiếp tam giác OMD hay tứ giác OMDK là tứ giác nội tiếp đường tròn

K đối xứng với C qua AB => gócKOD= gócDOC = 2 gócCBA = gócCBK

mà tứ giác BCMN nội tiếp nên gócCBK= góc CMK=gócDMK

vậy góc KOD= gócDMK => tứ giác DOMK nội tiếp đường tròn hay đường tròn ngoại tiếp tam giác OMD luôn đi qua O và K là 2 điểm cố định

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

11 tháng 1 2021

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

7 tháng 7 2018

B C O A D d M K E N I H F P d'

1) Xét nửa đường tròn (O) đường kính BC có điểm N thuộc (O) => ^CNB = 900

=> ^CNE = 1800 - ^CNB = 900. Xét tứ giác CDNE có:

^CDE = ^CNE = 900 => Tứ giác CDNE nội tiếp đường tròn (đpcm).

2) Ta có điểm M thuộc nửa đường tròn (O) đường kính BC => ^CMB = 900

=> BM vuông góc CE. Xét \(\Delta\)BEC:

BM vuông góc CE; ED vuông góc BC; BM giao ED tại K => K là trực tâm \(\Delta\)BEC

=> CK vuông góc BE. Mà CN vuông góc BE (Do ^CNB = 900) => 3 điểm C;K;N thẳng hàng (đpcm).

3) Gọi giao điểm của MN với DE là H. Lấy F là trung điểm của EH. BH cắt CF tại điểm P.

Xét tứ giác CMHD: ^CMH = ^CDH = 900 => CMKD nội tiếp đường tròn => ^MCK = ^MDK (1)

Tương tự: ^NBK = ^NDK     (2)

Từ (1) & (2) => ^MDK = ^NDK hay ^MDH = ^FDN

Tương tự: ^DMB = ^NMB => ^DMH = 2.^DMB (3)

Dễ thấy tứ giác BDME nội tiếp đường tròn => ^DMB = ^BED (2 góc nt chắn cung BD)

Hay ^DMB = ^NEF. Xét \(\Delta\)ENH vuông tại N: H là trung điểm EH

=> \(\Delta\)NEF cân tại F. Do ^DFN là góc ngoài \(\Delta\)NEF => ^DFN = 2.^NEF

Mà ^DMB = ^NEF (cmt) => ^DFN = 2.^DMB (4)

Từ (3) & (4) => ^DMH = ^DFN. Xét \(\Delta\)DMH và \(\Delta\)DFN:

^DMH = ^DFN ; ^MDH = ^FDN (cmt) => \(\Delta\)DMH ~ \(\Delta\)DFN (g.g)

=> \(\frac{DM}{DF}=\frac{DH}{DN}\)=> \(DH.DF=DM.DN\)(5)

Dễ chứng minh \(\Delta\)CMD ~ \(\Delta\)NBD => \(\frac{DM}{DB}=\frac{DC}{DN}\Rightarrow DM.DN=DB.DC\)(6)

Từ (5) & (6) => \(DH.DF=DB.DC\)\(\Rightarrow\frac{DH}{DB}=\frac{DC}{DF}\)

\(\Rightarrow\Delta\)CDH ~ \(\Delta\)FDB (c.g.c) => ^DHC = ^DBF. Mà ^DHC + ^DCH = 900

=> ^DBF + ^DCH = 900 => CH vuông góc BF.

Xét \(\Delta\)CFB: FD vuông góc BC; CH vuôn góc BF; H thuộc FD => H là trực tâm \(\Delta\)CFB

=> BH vuông góc CF (tại P). Ta có nửa đg trong (O) đg kính BC và có ^CPB = 900

=> P thuộc nửa đường tròn (O) => Tứ giác CMPB nội tiếp (O)

=> ^BMP = ^BCP (2 góc nt chắn cung BP) Hay ^HMP = ^DCP

Xét tứ giác CPHD: ^CPH = ^CDH = 900 => ^DCP + ^DHP = 1800

=> ^HMP + ^DHP = 1800 hay ^HMP + ^KHP = 1800 => Tứ giác MPHK nội tiếp đg tròn

=> ^KMH = ^KPH (2 góc nt chắn cung KH) hay ^KMN = ^KPB.

Lại có tứ giác EMKN nội tiếp đg tròn => ^KMN = ^KEN => ^KMN = ^KEB

=> ^KPB = ^KEB => Tứ giác BKPE nội tiếp đg tròn. Mà 3 điểm B;K;E cùng thuộc (I)

=> Điểm P cũng thuộc đg tròn (I) => IP=IB => I thuộc trung trực của BP

Mặt khác: OP=OB => O cũng thuộc trung trực của BP => OI là trung trực của BP

=> OI vuông góc BP. Mà CF vuông góc BP (cmt) => OI // CF (7)

I nằm trên trung trực của EK và F là trung điểm EK => IF vuông góc EK => IF vuông góc d

OC vuông góc d => OC // IF (8)

Từ (7) & (8) => Tứ giác COIF là hình bình hành => IF = OC = R (bk của (O))

=> Độ dài của IF không đổi. Mà IF là khoảng cách từ I đến d (Do IF vuông góc d)

=> I nằm trên đường thẳng d' // d và cách d một khoảng bằng bán kính của nửa đường tròn (O)

Vậy điểm I luôn nằm trên d' cố định song song với d và cách d 1 khoảng = bk nửa đg tròn (O) khi M thay đổi.

22 tháng 5 2018
bạn giải ra chưa? giúp mình câu 3 với
20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).

20 tháng 1 2020

ÔNG CHOI MOPE.IO dúng ko tui gap ong nek

21 tháng 1 2020

MOPE.IO là cái l gì thế