Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
a: MB là tiếp tuyến của (O), B là tiếp điểm
nên MB\(\perp\)BO tại B
=>ΔBOM vuông tại B
b:
ΔOBH vuông tại H
=>\(BH^2+HO^2=BO^2\)
=>\(BH^2=5^2-3^2=16\)
=>BH=4(cm)
Xét ΔOBM vuông tại B có BH là đường cao
nên \(OH\cdot OM=OB^2\)
=>\(OM=\dfrac{5^2}{3}=\dfrac{25}{3}\left(cm\right)\)
ΔOBM vuông tại B
=>\(OB^2+BM^2=OM^2\)
=>\(BM^2+5^2=\left(\dfrac{25}{3}\right)^2\)
=>\(BM^2=\dfrac{625}{9}-25=\dfrac{400}{9}\)
=>BM=20/3(cm)
c: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của \(\widehat{BOC}\)
Xét ΔOBM và ΔOCM có
OB=OC
\(\widehat{BOM}=\widehat{COM}\)
OM chung
Do đó: ΔOBM=ΔOCM
=>\(\widehat{OBM}=\widehat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)
d: Xét tứ giác OBMC có
\(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)
=>OBMC là tứ giác nội tiếp đường tròn đường kính OM
Tâm là trung điểm của OM
Lời giải:
a.
$OB=OC$ nên tam giác $OBC$ cân
Do đó đường cao $OH$ đồng thời là trung tuyến hay $H$ là trung điểm $BC$
$\Rightarrow BH=4$ (cm)
Do $BA$ là tiếp tuyến $(O)\Rightarrow BA\perp BO$
Áp dụng HTL trong tam giác vuông với tam giác $ABO$:
$\frac{1}{AB^2}+\frac{1}{BO^2}=\frac{1}{BH^2}$
$\frac{1}{AB^2}+\frac{1}{5^2}=\frac{1}{4^2}$
$\Rightarrow AB=\frac{20}{3}$ (cm)
$AO=\sqrt{AB^2+BO^2}=\sqrt{(\frac{20}{3})^2+5^2}=\frac{25}{3}$ (cm)
b.
Vì $AO$ cắt $BC$ tại trung điểm $H$ của $BC$ và $AO\perp BC$ nên $AO$ là đường trung trực của $BC$
$\Rightarrow AC=AB$. Mà $OB=OC$ nên:
Do đó $\triangle ACO=\triangle ABO$ (c.c.c)
$\Rightarrow \widehat{ACO}=\widehat{ABO}=90^0$
$\Rightarrow AC\perp CO$ nên $AC$ là tiếp tuyến $(O)$
$AC=AB=\frac{20}{3}$ (cm)
a: Xét ΔOBM vuông tại B có BI là đường cao
nên \(OI\cdot OM=OB^2\)
=>\(OM\cdot2=5^2=25\)
=>OM=25/2=12,5(cm)
Ta có: ΔBIO vuông tại I
=>\(IB^2+IO^2=BO^2\)
=>\(IB^2+2^2=5^2\)
=>\(IB^2=21\)
=>\(IB=\sqrt{21}\left(cm\right)\)
Ta có: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC và OI là phân giác của góc BOC
Ta có: I là trung điểm của BC
=>\(BC=2\cdot BI=2\sqrt{21}\left(cm\right)\)
c: Xét ΔOBM và ΔOCM có
OB=OC
\(\widehat{BOM}=\widehat{COM}\)
OM chung
Do đó: ΔOBM=ΔOCM
=>\(\widehat{OBM}=\widehat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)