K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 12 2017
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
a: MB là tiếp tuyến của (O), B là tiếp điểm
nên MB\(\perp\)BO tại B
=>ΔBOM vuông tại B
b:
ΔOBH vuông tại H
=>\(BH^2+HO^2=BO^2\)
=>\(BH^2=5^2-3^2=16\)
=>BH=4(cm)
Xét ΔOBM vuông tại B có BH là đường cao
nên \(OH\cdot OM=OB^2\)
=>\(OM=\dfrac{5^2}{3}=\dfrac{25}{3}\left(cm\right)\)
ΔOBM vuông tại B
=>\(OB^2+BM^2=OM^2\)
=>\(BM^2+5^2=\left(\dfrac{25}{3}\right)^2\)
=>\(BM^2=\dfrac{625}{9}-25=\dfrac{400}{9}\)
=>BM=20/3(cm)
c: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của \(\widehat{BOC}\)
Xét ΔOBM và ΔOCM có
OB=OC
\(\widehat{BOM}=\widehat{COM}\)
OM chung
Do đó: ΔOBM=ΔOCM
=>\(\widehat{OBM}=\widehat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)
d: Xét tứ giác OBMC có
\(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)
=>OBMC là tứ giác nội tiếp đường tròn đường kính OM
Tâm là trung điểm của OM