\(\in\)(O); tiếp tuyến với (O) tại B và C cắt nhau tại A, M
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
6 tháng 10 2016

???ng tr�n c: ???ng tr�n qua B_1 v?i t�m O ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [D, E] ?o?n th?ng l: ?o?n th?ng [O, D] ?o?n th?ng m: ?o?n th?ng [O, E] ?o?n th?ng n: ?o?n th?ng [B, C] ?o?n th?ng p: ?o?n th?ng [B, O] ?o?n th?ng q: ?o?n th?ng [C, O] ?o?n th?ng r: ?o?n th?ng [D, K] ?o?n th?ng s: ?o?n th?ng [I, E] ?o?n th?ng t: ?o?n th?ng [O, M] O = (0.76, 0.64) O = (0.76, 0.64) O = (0.76, 0.64) ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m A: Giao ?i?m c?a f, g ?i?m A: Giao ?i?m c?a f, g ?i?m A: Giao ?i?m c?a f, g ?i?m M: ?i?m tr�n c ?i?m M: ?i?m tr�n c ?i?m M: ?i?m tr�n c ?i?m D: Giao ?i?m c?a j, h ?i?m D: Giao ?i?m c?a j, h ?i?m D: Giao ?i?m c?a j, h ?i?m E: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a j, i ?i?m I: Giao ?i?m c?a l, n ?i?m I: Giao ?i?m c?a l, n ?i?m I: Giao ?i?m c?a l, n ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n ?i?m K: Giao ?i?m c?a m, n

a. Ta thấy \(\widehat{CBA}=\frac{sđ\left(BC\right)}{2}\) (Kí hiệu số đo cùng BC là sđ(BC) )

Lại có \(\widehat{DOC}=\widehat{DOM}+\widehat{MOE}=\frac{\widehat{BOM}}{2}+\widehat{\frac{MOC}{2}}=\frac{\widehat{BOC}}{2}=\frac{sđ\left(BC\right)}{2}\)

Vậy \(\widehat{CBA}=\widehat{DOE}\)

Lại có \(\widehat{BDI}=\widehat{ODE}\) (Do BD và DM là hai tiếp tuyến)

Vậy nên \(\Delta BDI\sim\Delta ODE\left(g-g\right)\)

\(\Rightarrow\frac{DI}{DE}=\frac{BD}{OD}\Rightarrow DB.DE=DI.DO\left(đpcm\right)\)

b. Ta thấy do \(\Delta BDI\sim\Delta ODE\left(cmt\right)\Rightarrow\widehat{BID}=\widehat{OED}=\widehat{OEC}\)

\(\Rightarrow\)OIEC là tứ giác nội tiếp \(\Rightarrow\widehat{OIE}=\widehat{OCE}=90^o\Rightarrow EI\perp DO.\)

Tương tự \(DK\perp DE.\)

Xét tam giác ODE có OM, DK , EI là các đường cao nên chúng đồng quy.

6 tháng 10 2016

la sao