Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(O_2D=O_2A+CD=\dfrac{AC}{2}+\dfrac{BC}{2}=\dfrac{AB}{2}=R_1\)
góc O2MD=góc O2MC+góc CMD
=1/2*sđ cung CM+góc MCA
=90 độ
=>DM là tiếp tuyến của (O2)
PD^2=BD*DA=DC*BA=DM^2=O2D-R2^2
=>PD^2=R1^2-R2^2
2: Xet ΔD1BD vuông tại D1 và ΔD4BD vuông tại D4 có
BD chung
góc D1BD=góc D4BD
=>ΔD1BD=ΔD4BD
=>D1=D4
CM tương tự, ta được: DD2=DD3, BP=BQ, PA=PB
=>D1D+D2D+D3D+D4D<=1/2(BP+PA+AQ+QB)
=>2*(D1D+D2D)<=PA+PB
PB^2=BD^2+DP^2>=2*DB*DP
=>\(PB>=\dfrac{2\cdot DB\cdot DP}{PB}=2\cdot D_1D\)
Chứng minh tương tự,ta được: \(AP>=\dfrac{2\cdot DA\cdot DP}{PA}=2\cdot D_2D\)
=>ĐPCM
Kẻ tiếp tuyến chung tại A cắt DE tại I
Trong đường tròn (O) ta có:
IA = ID (tính chất hai tiếp tuyến cắt nhau)
Trong đường tròn (O’) ta có :
IA = IE (tính chất hai tiếp tuyến cắt nhau)
Suy ra : IA = ID = IE = (1/2).DE
Tam giác ADE có đường trung tuyến AI ứng với cạnh DE và bằng nửa cạnh DE nên tam giác ADE vuông tại A
Suy ra:
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiêp tuyến cắt nhau)
Xét ΔABC có AB=AC(cmt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Ta có: OA=OB(=R)
nên O nằm trên đường trung trực của CB(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của CB(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
hay OA\(\perp\)BC(đpcm)
a, Chứng minh được B A C ^ = 90 0 kết hợp B A D ^ = C A E ^ = 90 0 => ĐPCM
b, Chứng minh ∆BAD:∆EAC => AD.AE=AB.AC(đpcm)
c, Chứng minh tứ giác OIO’K là hình chữ nhật
Đường tròn ngoại tiếp ∆OKO’ chính là đường tròn ngoại tiếp hình chữ nhật ,có đường kính là IK mà IK ⊥ BC tại I
Ta có: IA = ID = IE (chứng minh trên)
Suy ra A nằm trên đường tròn tâm I đường kính DE
Vì OO’ ⊥ IA tại A nên OO’ là tiếp tuyến của đường tròn (I; DE/2)
a: Xét tứ giácc ABOC có
góc OBA+góc OCA=180 độ
nen ABOC là tứ giác nội tiếp
b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có
góc CAO=góc CDE
Do đó: ΔCAO đồng dạng vơi ΔCDE
=>CA/CD=CO/CE
=>CA/CO=CD/CE
Xét ΔCAD và ΔCOE có
CA/CO=CD/CE
góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE
a) Xét (O): AI và DI là 2 tiếp tuyến cắt nhau tại I (gt)
=> AI = DI (TC 2 tiếp tuyến cắt nhau)
CMTT: AI = EI (TC 2 tiếp tuyến cắt nhau)
=> AI = EI = DI
Mà DE = EI + DI
=>AI = EI = DI =\(\dfrac{DE}{2}\)
Xét tam giác ADE có: AI = EI = DI =\(\dfrac{DE}{2}\)(cmt)
=> Tam giác ADE vuông tại A (định lý đảo đường trung tuyến trong tam giác vuông)
=> ^MAN = 90o
Xét tam giác AID: AI = DI (cmt) => Tam giác AID cân tại I
Mà IM là đường phân giác AID (AI và DI là 2 tiếp tuyến cắt nhau tại I)
=> IM là đường cao
=> ^IMA = 90o
CMTT: ^ANI = 90o
Xét TG AMIN:
^IMA = 90o (cmt)
^ANI = 90o (cmt)
^MAN = 90o (cmt)
=> AMIN là hình chữ nhật (dhnb)
b) Xét tam giác OAI vuông tại A, AM là đường cao ( do AM vg góc OI)
=> IM.IO = IA2 (HTL) (1)
Xét tam giác O'AI vuông tại A, AN là đường cao ( do AN vg góc O'I)
=> IN.IO' = IA2 (HTL) (2)
Từ (1) và (2) => IM.IO = IN.IO’ (đpcm)
c) Xét (O) và (O'): 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A (cmt)
=> A \(\in\)OO' (TC đường nối tâm)
mà IA vg góc AO (do AI là tiếp tuyến trong của 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A )
=> OO' vg góc AI tại A (*)
Xét tam giác ADE vuông tại A (^DAE = 90o do AMIN là hcn)
I là TĐ của DE (do ID = IE = \(\dfrac{DE}{2}\))
=> I là tâm đường tròn đường kính DE, nội tiếp tam giác ADE
=> A \(\in\)(I) (**)
Từ (*) và (**) => OO’ là tiếp tuyến của đường tròn đường kính DE có A là tiếp điểm.
d) Xét tg OIO' vuông tại I, AI là đường cao:
AI2 = AO . AO' (HTL)
=> AI2= R. R'
Mà AI = \(\dfrac{DE}{2}\)(cmt)
=> (\(\dfrac{DE}{2}\))2 = R . R'
<=> \(\dfrac{DE^2}{4}\) = R . R'
<=> DE = 2\(\sqrt{R.R'}\)