Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)
\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)
b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)
mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)
\(\Rightarrow16^n-15n-1⋮15\)
a: \(\Rightarrow x^3-2x^2+3x^2-6x-5x+10+n-10⋮x-2\)
=>n-10=0
=>n=10
b: \(A=5n\left(n^2+3n+2\right)=5n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là 3 số liên tiếp
nên n(n+1)(n+2) chia hết cho 3!=6
=>A chia hết cho 30
Ta có
\(n^2-3n+6=\left(n-4\right)\left(n+1\right)+10\)
Vì 10 chia hết cho 5 nên để n^2-3b+6 chia hết cho 5 thì n-4 chia hết cho 5 hoặc n+1 chia hết cho 5
Ta có
n-4 chia hết cho 5
=>n-4=5k(k thuộc n)
=>n=5k+4
TH2
n+1 chia hết cho 5
=>n+1=5r(r thuộc N)
<=>n=5r-1
Ta có: \(B=16^n-15n-1=16^n-1^n-15n\)
Mặt khác vì \(n\in N\)nên \(16^n-1^n⋮16-1=15\)
Mà 15n chia hết cho 15
Vậy \(16^n-15n-1⋮15.15=225\left(dcpcm\right)\)