K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

Ta có: 

\(A\cap B=\varnothing\) 

\(\Rightarrow\left[{}\begin{matrix}5-2m< -5\\1-2m\ge3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2m< -10\\-2m\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>5\\m\le-1\end{matrix}\right.\)

Vậy: ...

NV
15 tháng 9 2021

\(A\cap B\ne\varnothing\Leftrightarrow\left[{}\begin{matrix}m+1< 2m-1< m+3\\m+1< 2m< m+3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2< m< 4\\1< m< 3\end{matrix}\right.\) \(\Rightarrow1< m< 4\)

17 tháng 9 2021

Dạ em cảm ơn ạ

Để A hợp B=A thì B là tập con của A

=>2m-5<23 và 23<=-m

=>2m<28 và -m>=23

=>m<=-23 và m<14

=>m<=-23

=>Chọn B

18 tháng 12 2020

a, \(A\subset B\Leftrightarrow\left\{{}\begin{matrix}m+3\ge5\\2m-1< -4\end{matrix}\right.\Rightarrow m\in\left\{\varnothing\right\}\)

b, \(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m+3\le5\\2m-1>-4\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m\le2\)

c, \(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}2m-1>5\\m+3\le-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>3\\m\le-7\end{matrix}\right.\)

d, \(A\cup B\) là một khoảng \(\Leftrightarrow\left\{{}\begin{matrix}m+3>5\\2m-1\le5\end{matrix}\right.\Leftrightarrow2< m\le3\)

NV
21 tháng 9 2021

a.

\(\left(-\infty;2m+1\right)\subset\left(-\infty;1\right)\Rightarrow2m+1\le1\)

\(\Rightarrow m\le0\)

b.

\((-\infty;2-3m]\cap[2;+\infty)=\varnothing\Rightarrow2-3m< 2\)

\(\Rightarrow m>0\)

c.

\(\left[-1;3\right]\cap\left(2m-5;2m+4\right)=\varnothing\Rightarrow\left[{}\begin{matrix}2m-5\ge3\\2m+4\le-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\m\le-\dfrac{5}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 9 2018

Câu 1:

Bạn vẽ trục số 1 cái trên 1 cái dưới cho dễ tưởng tượng

Khi đó, để \(A\cap B=\oslash\) thì có 2 khả năng xảy ra:

\(n\leq -5\) hoặc \(n-2>9\Leftrightarrow n> 11\)

Vậy $n\leq -5$ hoặc $n> 11$

Ngược lại. Để \(A\cap B\neq \oslash\) thì \(n> -5\) hoặc $n< 11$

AH
Akai Haruma
Giáo viên
19 tháng 9 2018

Câu 2:

Tương tự câu 1: Để \(M\cap N\neq \oslash \Rightarrow m+1\leq 1\) hoặc \(m\geq 3\)

Hay \(m\leq 0\) hoặc $m\geq 3$

Câu 3:

Để \(A\cap B\neq \oslash \) thì \(x+2\leq 2\) hoặc $x\geq 5$

hay \(x\leq 0\) hoặc $x\leq 5$

17 tháng 9 2023

\(A=\left(-3;-1\right)\cup\left(1;2\right)\)

\(B=\left(-1;+\infty\right)\)

\(C=\left(-\infty;2m\right)\)

\(A\cap B=\left(-3;-1\right)\)

Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)

\(\Leftrightarrow m\ge-\dfrac{1}{2}\)

Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài

a: \(A\cap B=\left(-3;1\right)\)

\(A\cup B\)=[-5;4]

A\B=[1;4]

\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)

b: C={1;-1;5;-5}

\(B\cap C=\left\{-5;-1\right\}\)

Các tập con là ∅; {-5}; {-1}; {-5;-1}