K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)

Theo hệ thức lượng trong tam giác vuông, ta có:

O I 2 = MI.NI

Mà: MI = MA, NI = NB (chứng minh trên)

Suy ra : AM.BN =  O I 2  =  R 2

24 tháng 6 2017

gọi H là điểm tiếp điểm của MN với nữa đường tròn

ta có : OM là tia phân giác của góc AOH (theo tính chất 2 tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOH (theo tính chất 2 tiếp tuyến cắt nhau)

mà 2 góc MOH và HON kề bù \(\Rightarrow\) MON = 900

24 tháng 6 2017

b) AM = HM và BN = HN (tính chất 2 tiếp tuyến cắt nhau) (1)

nên MN = HM + HN = AM + BN

vậy MN = AM + BN (đpcm)

c) từ (1) ta có : AM.BN = HM.HN

ta lại có : HM HN = OH2 = R2 (hệ thức lượng)

\(\Rightarrow\) AM.BN = R2 (đpcm)

27 tháng 11 2021

                                                           bài làm

a, gọi H là tiếp điểm của tiếp tuyến MN 

theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M

⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)

theo giả thuyết 2 tiếp tuyến HN cắt BN tại N

⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)

nên ta có: MN=HM=HN=\(\dfrac{1}{2}\)(AOH =HON)=90 độ

vậy góc MON=90 đọ và là tâm giác vuông tại O đường cao OH

b,theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M

⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)

theo giả thuyết 2 tiếp tuyến HN cắt BN tại N

⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)

Theo hệ thức lượng trong tam giác vuông: OI^2=MI.INOH2=MH.HNAM.BN=MI.NI=OI^


Vì vậy AM.BN=MI.NI=OI^2=R^2AM.BN=MH.NH=
\(OH^2\)
=\(R^2\)


 

 

 

 

a: Xét (O) có 

ME là tiếp tuyến

MA là tiếp tuyến

Do đó: ME=MA và OM là tia phân giác của góc AOE(1)

Xét (O) có

NE là tiếp tuyến

NB là tiếp tuyến

Do đó: NE=NB và ON là tia phân giác của góc BOE(2)

Từ (1) và (2) suy ra \(\widehat{MON}=\dfrac{1}{2}\cdot\left(\widehat{EOA}+\widehat{EOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

b: Ta có: MN=ME+NE

nên MN=MA+NB

c: Xét ΔOMN vuông tại O có OE là đường cao

nên \(OE^2=EM\cdot EN\)

hay \(AM\cdot BN=R^2\)

7 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MA = MI (tính chất hai tiếp tuyến cắt nhau)

NB = NI (tính chất hai tiếp tuyến cắt nhau)

Mà: MN = MI + IN

Suy ra: MN = AM + BN

a: góc HKA+góc HFA=180 độ

=>HKAF là tứ giác nộitiếp

b: góc EIK>góc KIA=góc KEA

a: góc HKA+góc HFA=180 độ

=>HKAF là tứ giác nộitiếp

b: góc EIK>góc KIA=góc KEA

22 tháng 12 2017

a) x4+x3+2x2+x+1=(x4+x3+x2
)+(x2+x+1)=x2
(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3
-3abc=a3+3ab(a+b)+b3+c3
 -(3ab(a+b)+3abc)=(a+b)3+c3
-3ab(a+b+c)
=(a+b+c)((a+b)2
-(a+b)c+c2
)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2
-ac-ab+c2
-3ab)=(a+b+c)(a2+b2+c2
-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2
(y-z)+y2
(z-x)+z2
(x-y)=x2
(y-z)-y2
((y-z)+(x-y))+z2
(x-y)
=x2
(y-z)-y2
(y-z)-y2
(x-y)+z2
(x-y)=(y-z)(x2
-y2
)-(x-y)(y2
-z2
)=(y-z)(x2
-2y2+xy+xz+yz)

k mk nha $_$
:D

21 tháng 1 2021

x y M N A O B 1 2 3 4

a) Vì MA , MI là 2tt của đường tròn (O) , nên ^O1 = ^O2 (1)

Vì NB , NI là 2tt của nửa đường tròn (O) , nên ^O3 = ^O4 (2)

Từ (1) và (2) => \(\widehat{O_2}+\widehat{O_3}=\widehat{O_1}+\widehat{O_4}=\frac{180^o}{2}=90^o\)

Mà ^MON = 90^o

Vậy : ^MON = 90^o

b) Theo t/c 2tt cắt nhau , ta có :

AM = MI ; NI = NB

MN = MI + IN = AM + BN

Vậy : MN = AM + BN ( đpcm )

c) Áp dụng hệ thức lượng tam giác trong tam giác OMN vuông tại O , đường cao OI

Ta có : \(OI^2=IM.IN\)

\(\Rightarrow IM.IN=R^2\)( R bán kính )

Mặt khác : MA = MI ; NB = NT

Vậy : AM . BN = R^2 ( đpcm )