Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) OBNC có NCO=OBN=90 nên OBNC là tứ giác nội tiếp
b) Xét tam giác ADC có AB,DC là các đường cao
mà AB cắt DC tại O
suy ra O là trực tâm của tam giác ADC
nên NO vuông góc với AD
c)
CONB là tứ giác nôi tiếp nên COA=CNB
Xét tam giác ACO và tam giác DCN
COA=CNB(cmt)
ACO=NCD=90
nên tam giác ACO đồng dạng với tam giác DNC
nên CA.CN=CO.CD
Còn câu d mk chịu
1: ΔOAM cân tại O
mà OC là trung tuyến
nên OC vuông góc AM
góc OBN+góc OCN=180 độ
=>OCNB nội tiếp
2: Xét ΔACO vuông tại C và ΔABN vuông tại B có
góc CAO chung
=>ΔACO đồng dạng với ΔABN
=>AC/AB=AO/AN
=>AC*AN=AO*AB
Câu a : Ta có : \(\Delta OMA\) cân tại O và \(AC=MC\) nên \(OC\perp AM\) hay \(\widehat{OCN}=90^0\) .
Xét tứ giác OBNC ta có :
\(\widehat{OCN}=90^0\) ( cmt )
\(\widehat{OBN}=90^0\) ( Tiếp tuyến vuông góc với bán kính )
\(\Rightarrow\widehat{OCN}+\widehat{OBN}=180^0\) hay OBNC là tứ giác nội tiếp (đpcm )
Câu b : Xét tam giác AND ta có :
AB là đường cao xuất phát từ đỉnh A .
DC là đường cao xuất phát từ đỉnh D .
Mà hai đường cao này cắt nhau tại O cho nên O là trực tâm của \(\Delta AND\)
NO cắt AD suy ra NO là đường cao của tam giác AND \(\Rightarrow NO\perp AD\)
Câu c : Ta có : \(\left\{{}\begin{matrix}\widehat{CAO}+\widehat{ANB}=90^0\\\widehat{CDN}+\widehat{ANB}=90^0\end{matrix}\right.\Rightarrow\widehat{CAO}=\widehat{CDN}\)
Xét tam giác CAO và tam giác CDN ta có :
\(\left\{{}\begin{matrix}\widehat{ACO}=\widehat{DCN}\left(=90^0\right)\\\widehat{CAO}=\widehat{CDB}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CAO\sim\Delta CDN\left(g-g\right)\)
\(\Rightarrow\frac{CA}{CD}=\frac{CO}{CN}\Rightarrow CA.CN=CO.CD\) ( đpcm )
Câu d : Xét tam giác AMB và tam giác ABN ta có :
\(\left\{{}\begin{matrix}\widehat{BAM}:chung\\\widehat{AMB}=\widehat{ABN}\left(=90^0\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMB\sim\Delta ABN\left(g-g\right)\)
\(\Rightarrow\frac{AM}{AB}=\frac{AB}{AN}\Rightarrow AM.AN=AB^2=4R^2\)
Áp dụng BĐT Cô - si ta có : \(2AM+AN\ge2\sqrt{2AM.AN}=2\sqrt{8R^2}=4R\sqrt{2}\)
Vậy GTNN của 2AM + AN là \(4R\sqrt{2}\) khi và chỉ khi M là trung điểm của AN
a, Kẻ OM ⊥ CD
Gọi K = OD ∩ d => ∆COK = ∆COD
=> OK = OD => OM = OA = R => CD là tiếp tuyến
b, AC+BD=CM+DM=CD ≥ AB
Do đó min (AC+BD)=AB
<=> CD//AB => ABCD là hình chữ nhật <=> AC = AO
c, AC.BD = MC.MD = O M 2 = 4 a 2
=> 1 O C 2 + 1 O D 2 = 1 4 a 2
d, Từ tính chất hai giao tuyến => MN//BD => MNAB hay MHAB;
AC//BD; MN//BD; NH//BD
=> M N B D = N H B D => MN = NH
a, Từ CA, CM là tiếp tuyến của (O) chứng minh được A,C,M,O ∈ đường tròn bán kính O C 2
b, Chứng minh OC,BM cùng vuông góc với AM . từ đó suy ra OC//BM
c, S A C D B = A C + B D A B 2 = A D . A B 2
=> S A C D B nhỏ nhất khi CD có độ dài nhỏ nhất
Hay M nằm chính giữa cung AB
d, Từ tính chất hai giao tuyến => AC = CM và BM=MD, kết hợp với AC//BD
ta chứng minh được C N N B = C M M D => MN//BD => MN ⊥ AB