Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác MAO và tam giác MCO có
MA = MC
MO chung
AO = AC
=> tam giác MAO = tam giác MCO
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O
\(\Rightarrow OM\) là đường cao của tam giác AOC
\(\Rightarrow\)OM vuông góc với AC
b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)OM vuông góc AC
Mà NC vuông góc AC
=> OM // NC (1)
ta lại có AI = IC (2)
Từ (1) và (2) => OM là đường trung bình của tam giác ONC
=> M là trung điểm của AN
c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)
\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)
Mà MN = AM nên => CK = KH
Vậy K là trung điểm của CH
a: Xét (O) có
MC,MB là các tiếp tuyến
Do đó: MC=MB
=>M nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra MO là đường trung trực của BC
=>MO\(\perp\)BC
b: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>BC\(\perp\)AC tại C
=>BC\(\perp\)AN tại C
=>ΔBNC vuông tại C
Ta có: \(\widehat{NCM}+\widehat{MCB}=\widehat{NCB}=90^0\)
\(\widehat{CNM}+\widehat{CBM}=90^0\)(ΔNCB vuông tại C)
mà \(\widehat{MCB}=\widehat{MBC}\)
nên \(\widehat{NCM}=\widehat{CNM}\)
=>ΔMNC cân tại M
=>MN=MC
mà MC=MB
nên MN=MB
=>M là trung điểm của BN
c: ta có: CH\(\perp\)AB
NB\(\perp\)BA
Do đó: CH//NB
Xét ΔANM có CI//NM
nên \(\dfrac{CI}{NM}=\dfrac{AI}{AM}\left(3\right)\)
Xét ΔAMB có IH//MB
nên \(\dfrac{IH}{MB}=\dfrac{AI}{AM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{CI}{NM}=\dfrac{IH}{MB}\)
mà NM=MB
nên CI=IH
=>I là trung điểm của CH
a: góc EAO+góc EMO=180 độ
=>EAOM nội tiếp
b: góc AMB=1/2*sđ cung AB=90 độ
Xét (O) co
EM,EA là tiếptuyến
=>EM=EA
mà OM=OA
nên OE là trung trực của AM
=>OE vuông góc AM tại P
Xét (O) có
FM,FB là tiếptuyến
=>FM=FB
=>OF là trung trực của MB
=>OF vuông góc MB tại Q
góc MPO=góc MQO=góc PMQ=90 độ
=>MPOQ là hình chữ nhật
b: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CM+MD=CD
nên CD=AC+BD
a: Xét (O) có
CM,CA là tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)
OC là phân giác của \(\widehat{AOM}\)
nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)
Xét (O) có
DM,DB là tiếp tuyến
DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)
Ta có: OD là phân giác của \(\widehat{MOB}\)
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)
b: Xét tứ giác BDMO có
\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)
=>BDMO là tứ giác nội tiếp đường tròn đường kính OD
=>B,D,M,O cùng nằm trên đường tròn đường kính OD
Bán kính là \(R'=\dfrac{OD}{2}\)
c: Ta có: CD=CM+MD
mà CM=CA
và DM=DB
nên CD=CA+DB
d,e: Gọi N là trung điểm của CD
Xét hình thang ABDC có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
Ta có: ON//AC
AC\(\perp\)AB
Do đó: ON\(\perp\)AB
Ta có: ΔCOD vuông tại O
=>ΔCDO nội tiếp đường tròn đường kính CD
=>ΔCOD nội tiếp (N)
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)
f: Xét ΔNCA và ΔNBD có
\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)
\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)
Do đó: ΔNCA đồng dạng với ΔNBD
=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)
Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)
nên MN//AC