Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là giao điểm của AD và BC; H là giao điểm của MN và AB
Chứng minh góc AHM= 90; mà góc CAB 45(gt) nên tam giác AHM vuông cân
=>MH = AH
=>MH + HB = AH + HB = 2R (1)
* Tam giác MHB vuông tại H
HB = MB.cos MBH => MB= \(\frac{HB}{sosMBH}\)=\(\frac{HB}{cos60^0}\)=2HB
MH = MB. sin MBH => MH= MB. sin60=\(\frac{MB\sqrt{3}}{2}=HB\sqrt{3}\)
=> \(HB=\frac{MH}{\sqrt{3}}=\frac{\sqrt{3}MH}{3}\) (2)
Từ (1) và (2) ta có \(MH+\frac{\sqrt{3}MH}{3}=2R\Rightarrow MH=\frac{6R}{3+\sqrt{3}}=\left(3-\sqrt{3}\right)R\)
Vậy \(S=\frac{AB.MH}{2}=\frac{1}{2}.2R\left(3-\sqrt{3}\right)R=\left(3-\sqrt{3}\right)R^2\)
cảm ơn bạn, mình còn rất nhiều bt vì mình đang ôn đội tuyển, mong đc các bạn giúp đỡ
a: sđ cung AC=2/3*180=120 độ
=>sđ cung AM=sđ cung MC=120/2=60 độ
sđ cung NB=sđ cung NC=60/2=30 độ
góc MIC=1/2(sđ cung AB+sđ cung MC)
=1/2(180+60)=120 độ
b: N là điểm chính giữa của cung BC
=>ON vuông góc bC
=>ON//AC
=>DN vuông góc NO
=>DN là tiếp tuyến của (O)
a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO
b, O A = O F 2 + A F 2 = 5 R 3 => cos D A B ^ = A F A O = 4 5
c, ∆AMO:∆ADB(g.g) => D M A M = O B O A
mà M O D ^ = O D B ^ = O D M ^ => DM = OM
=> D B D M = D B O M = A D A M . Xét vế trái B D D M - D M A M = A D - D M A M = 1
d, D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4
=> S O M D B = 13 R 2 8
S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π