Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
Sửa đề: M,N,P,Q cùng thuộc một đường tròn
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>BM\(\perp\)AQ tại M
Xét (O) có
ΔBNA nội tiếp
BA là đường kính
Do đó: ΔBNA vuông tại N
=>BN\(\perp\)AP
Xét ΔABQ vuông tại B có BM là đường cao
nên \(AM\cdot AQ=AB^2\left(1\right)\)
Xét ΔABP vuông tại B có BN là đường cao
nên \(AN\cdot AP=AB^2\left(2\right)\)
Từ (1),(2) suy ra \(AM\cdot AQ=AN\cdot AP\)
=>\(\dfrac{AM}{AP}=\dfrac{AN}{AQ}\)
Xét ΔAMN và ΔAPQ có
\(\dfrac{AM}{AP}=\dfrac{AN}{AQ}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN đồng dạng với ΔAPQ
=>\(\widehat{AMN}=\widehat{APQ}\)
mà \(\widehat{AMN}+\widehat{QMN}=180^0\)(hai góc kề bù)
nên \(\widehat{QMN}+\widehat{QPN}=180^0\)
=>MNPQ là tứ giác nội tiếp
=>M,N,P,Q cùng thuộc một đường tròn
Bài này cũng khó à nha ;)
a) ta có Góc ANB = 90° ( góc nội tiếp chắn nua đường tròn)
Và góc AMB = 90° (___________________________________)
Tương tự góc MAN = 90 (__________________________________)
=> Tứ giác AMBN là hình chữ nhật
B) Ta có Góc NAB = góc PBN ( cùng chắn cũng BN)
Mà Góc PBN + góc BPN = 90°
=> Góc NMB + Góc BPN = 90°
Tứ giác MNPQ có
Góc QMN+ góc BPN
= Góc QMB + góc NMB + Góc BPN
= 90 +90= 180°
=> Tứ giác MNPQ nội tiếp
Hãy M,N,P,Q cùng thuộc một đường tròn
C) ko bt làm
D) MN vuông góc AB nha do vộ quá nên ko viết đc bạn cứ kẻ đường cao rồi chứng minh
Cho bạn 1 tim ne2k! Cám ơn nhiều