K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

0 A B X Y E C D M 1 2 1 2

  1. Vì \(DB\)Là tiếp tuyến tại \(B\)\(MD\)là tiếp tuyến tại \(M\)\(\Rightarrow\hept{\begin{cases}\widehat{OBD=90^0}\\\widehat{OMD}=90^0\end{cases}}\Rightarrow MOBD\)Nội tiếp đường tròn
  2. \(AC,CM\)Là tiếp tuyến của đường tròn \(\left(O\right)\)tại \(A,C\)Theo tính chất tiếp tuyến luôn có \(oc\)là phân giác của \(\widehat{AOM}\)\(\Rightarrow\widehat{O_1}=\widehat{O_2}=\widehat{\frac{AOM}{2}}\)Mà \(\widehat{B_1}=\widehat{\frac{AOM}{2}}\)góc ở đỉnh và tâm cùng chắn cung \(AM\)\(\widehat{B_1}=\widehat{C_1}\left(1\right)\)Mà \(MOBD\)Nội tiếp đường tròn đường kính \(OD\)\(\Rightarrow\widehat{B_2}=\widehat{MOD\left(2\right)}\)Mặt khác \(\widehat{COD}=\widehat{C_1}+\widehat{MOD}\left(3\right)\)Từ 1,2,3 có : \(\widehat{COD}=\widehat{B_1}+\widehat{B_2}=90\left(dpcm\right)\)
  3. gọi tâm đường tròn nội tiếp \(BOMD\)Là \(H\)
8 tháng 6 2017

đANG VIẾT DỞ kích nhầm :)) tiếp nè :

Nối \(EH\)ta có phương \(MOBD\)Nội tiếp đường tròn tâm \(H\)Bán kính là \(OH\)có phương tích từ \(E\)Đến đường tròn \(\left(H\right)\)

\(\hept{\begin{cases}EM.ED=EH^2-OH^2\\EO.EB=EH^2-OH^2\end{cases}\Rightarrow EM.ED=EO.EB}\)

30 tháng 8 2017

      Câu này hơi kì, vì đề đã nói rõ tiếp tuyến cắt Oz tại M, thế thì M chạy trên tia Oz còn hỏi gì nữa??? 
mình nghĩ câu này, nên "giấu" cái Oz đi, mà cho M là trung điểm của CD, làm thế nhé 
Thấy tứ giác ABDC là hình thang vuông, có OM là đường trung bình (qua trung điểm 2 cạnh bên) 
=> OM // Ax // By => M chạy trên tia qua O và // Ax (chính là Oz) 
 

30 tháng 8 2017

mơn bạn nha

22 tháng 3 2021

Vẽ OH\perp CD\left(H\in CD\right)OHCD(HCD). Ta chứng minh OH = r = OB. (r là bán kính của đường tròn (O) ).
Tia CO cắt tia đối của tia By tại E.
Ta có \Delta OAC=\Delta OBE\left(g.c.g\right)\Rightarrow OC=OEΔOACOBE(g.c.g)⇒OC=OE.
Tam giác DEC có DO vừa là đường cao vừa là đường trung tuyến nên DEC là tam giác cân tại D.
Khi đó DO cũng là đường phân giác.
OH\perp DC,OB\perp DE\Rightarrow OH=OB.OHDC,OBDEOH=OB..
Suy ra CD tiếp xúc với (O) tại H.
Ta có OH\perp CD,OH=OB=rOHCD,OH=OB=r.
Vậy CD là tiếp tuyến của đường tròn (O).

22 tháng 8 2021

Vẽ OHCD(HCD). Ta chứng minh OH = r = OB. (r là bán kính của đường tròn (O) ).
Tia CO cắt tia đối của tia By tại E.
Ta có ΔOAC=ΔOBE(g.c.g)OC=OE.
Tam giác DEC có DO vừa là đường cao vừa là đường trung tuyến nên DEC là tam giác cân tại D.
Khi đó DO cũng là đường phân giác.
OHDC,OBDEOH=OB..
Suy ra CD tiếp xúc với (O) tại H.
Ta có OHCD,OH=OB=r.
Vậy CD là tiếp tuyến của đường tròn (O).

19 tháng 1 2017

A B E F x y M K O

a)\(\hept{\begin{cases}Ax⊥AB\\By⊥AB\end{cases}}\)=> Ax // By.\(\Delta KFB\)có EA // FB nên\(\frac{KF}{KA}=\frac{BF}{AE}\)(hệ quả định lí Ta-lét) mà EA = EM ; FM = FB (tính chất của 2 tiếp tuyến)

\(\Rightarrow\Delta AEF\)\(\frac{KF}{KA}=\frac{MF}{ME}\)nên MK // AE (định lí Ta-lét đảo) mà\(AE⊥AB\Rightarrow MK⊥AB\)

b)\(\widehat{EOM}=\frac{\widehat{AOM}}{2};\widehat{FOM}=\frac{\widehat{MOB}}{2}\)(tính chất 2 tiếp tuyến) mà\(\widehat{EOM}+\widehat{FOM}=180^0\)(kề bù)

\(\Rightarrow\widehat{EOF}=\widehat{EOM}+\widehat{FOM}=\frac{180^0}{2}=90^0\)

\(\Rightarrow\Delta EOF\)vuông tại O có OE + OF > EF (bđt tam giác) ; OE + OF < 2EF (vì OE,OF < EF)

\(\Rightarrow1< \frac{OE+OF}{EF}< 2\Rightarrow2< \frac{P_{EOF}}{EF}< 3\Rightarrow\frac{1}{3}< \frac{EF}{P_{EOF}}< \frac{1}{2}\)(1)

Hình thang AEFB (AE // FB) có diện tích là :\(\frac{\left(AE+FB\right).AB}{2}=\frac{\left(EM+FM\right).2R}{2}=EF.R\)

SAEO = SMEO vì có đáy OA = OM ; đường cao AE = ME\(\Rightarrow S_{MEO}=\frac{1}{2}S_{AEMO}\) 

SFOM = SFOB  vì có đáy FM = FB ; đường cao OM = OB\(\Rightarrow S_{FOM}=\frac{1}{2}S_{MFBO}\)

\(\Rightarrow S_{EOF}=\frac{1}{2}\left(S_{AEMO}+S_{MFBO}\right)=\frac{EF.R}{2}\).Từ tâm đường tròn nội tiếp I của\(\Delta EOF\)kẻ các đường vuông góc với OE,OF,EF thì\(S_{EOF}=S_{EIF}+S_{EIO}+S_{OIF}\)\(\Leftrightarrow\frac{EF.R}{2}=\frac{EF.r+EO.r+OF.r}{2}\)

\(\Rightarrow EF.R=P_{EOF}.r\Rightarrow\frac{r}{R}=\frac{EF}{P_{EOF}}\)(2).Thay (2) vào (1) ta có đpcm.

19 tháng 1 2017

sao nguyên bài khó thế