Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình.
a, \(xy\) cách \(\left(O\right)\) một khoảng \(OK=a\)
Mà \(OK< R\)
=> \(K\in xy\) và \(xy\) cắt \(\left(O\right)\) tại hai điểm D và E
b, \(OK\perp xy\) đồng thời \(OK\perp AK\) => \(\widehat{AKO}=90^o\) => K thuộc đường tròn đường kính AO (1)
AC, AB là 2 tiếp tuyến => \(\hept{\begin{cases}AC\perp CO\\AB\perp BO\end{cases}}\)=> \(\hept{\begin{cases}\widehat{ACO}=90^o\\\widehat{ABO}=90^o\end{cases}}\)
=> B, C thuộc đường kính BC (2)
(1); (2) => K, B, C thuộc đường kính BC
Hay O, A, B, C, K cùng thuộc đường kính BC
c, \(AK\perp KO\)
=> \(\widehat{AKS}=90^o\)
=> K thuộc đường tròn đường kính AS (3)
=> \(AO\perp BC\) tại M
=> \(\widehat{AMS}=90^o\)
=> M thuộc đường tròn đường kính AS (4)
(3); (4) => AMKS nội tiếp
sao cho gì vậy bạn?
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CB\(\perp\)AD
Xét ΔDBA vuông tại B có BC là đường cao
nên \(BC^2=CA\cdot CD\)
b: Bạn bổ sung dữ kiện đề bài đi bạn