Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
a/ Xét tam giác MAO và tam giác MCO có
MA = MC
MO chung
AO = AC
=> tam giác MAO = tam giác MCO
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
\(\Rightarrow OM\) là phân giác \(\widehat{AOC}\) mà tam giác AOC cân tạo O
\(\Rightarrow OM\) là đường cao của tam giác AOC
\(\Rightarrow\)OM vuông góc với AC
b/ Từ câu a ta suy ra được OM vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)OM vuông góc AC
Mà NC vuông góc AC
=> OM // NC (1)
ta lại có AI = IC (2)
Từ (1) và (2) => OM là đường trung bình của tam giác ONC
=> M là trung điểm của AN
c/ Ta thấy rằng CH // AN (vì cùng vuông góc AB)
\(\Rightarrow\frac{CK}{MN}=\frac{BK}{BM}=\frac{KH}{AM}\)
Mà MN = AM nên => CK = KH
Vậy K là trung điểm của CH
a, HS tự chứng minh
b, Gọi CH ∩ AB = K
Chứng minh được ∆MIC cân tại I
=> I C M ^ = I M C ^
Tương tự: O M A ^ = O A M ^
Chứng minh được I M O ^ = 90 0 => ĐPCM
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
=>ΔAMB vuông tại M
Xét (O) có
ΔANB nội tiếp
AB là đường kính
=>ΔANB vuông tại N
Xét ΔCAB có
AN.BM là đường cao
AN cắt BM tại H
=>H là trực tâm
=>CH vuông góc AB
b:
Gọi giao của CH vơi AB là K
=>CH vuông góc AB tại K
góc OMI=góc OMH+góc IMH
=góc OBM+góc IHM
=góc OBM+góc BHK=90 độ
=>IM là tiếp tuyến của (O)