Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình :
lời giải :
a) MN cắt ( O ) tại C
dễ thấy O'N vuông góc với AB
Ta có : \(\Delta O'MN\)cân tại O' nên \(\widehat{O'MN}=\widehat{O'NM}\)( 1 )
Mà \(\Delta OMC\)cân tại O nên \(\widehat{OMC}=\widehat{OCM}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{O'NM}=\widehat{OCM}\)nên O'N // OC
\(\Rightarrow OC\perp AB\), suy ra C cố định
b) vẽ bán kính \(OC\perp AB\) ( C và M thuộc hai nửa mặt phẳng đối nhau bờ AB )
CM cắt AB tại N
đường thẳng qua N và song song với OC cắt OM tại O'
Dựng đường tròn ( O';O'M )
đó là đường tròn phải dựng
a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)
Lại có: \(CH\perp AB\)tại H (gt) mà E \(\in CH\)(do E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\)
Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm
b.
Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C
=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)
=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)= \(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)
Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)
Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)
Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)
c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)
Nối K với M
Xét \(\Delta KOM\)và \(\Delta OCH\)có:
+ KO = OC = R
+ \(\widehat{KOM}=\widehat{HCO}\)(cmt)
+ OM = CH (gt)
=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)
\(a,\widehat{ACB}=90^0\left(\text{góc nt chắn nửa đg tròn}\right)\)
\(\left\{{}\begin{matrix}\widehat{FCI}+\widehat{ICE}=90^0\\\widehat{ICE}+\widehat{ACO}=\widehat{ICO}=90^0\end{matrix}\right.\Rightarrow\widehat{FCI}=\widehat{ACO}\\ OA=OC\Rightarrow\widehat{ACO}=\widehat{CAO}\\ \left\{{}\begin{matrix}\widehat{CBA}+\widehat{IFC}=90^0\\\widehat{CBA}+\widehat{CAO}=90^0\end{matrix}\right.\Rightarrow\widehat{IFC}=\widehat{CAO}=\widehat{ACO}\\ \Rightarrow\widehat{FCI}=\widehat{IFC}\Rightarrow IF=IC\left(1\right)\\ \left\{{}\begin{matrix}\widehat{FCI}+\widehat{ICE}=90^0\\\widehat{IFC}+\widehat{IEC}=90^0\end{matrix}\right.\Rightarrow\widehat{ICE}=\widehat{IEC}\Rightarrow IE=IC\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IF=IE\left(đpcm\right)\)
\(b,IE=IF=IC\left(cm\text{ trên}\right)\\ \Rightarrow I\text{ là tâm đường tròn ngoại tiếp }\Delta ECF\\ \text{Mà }OC\perp CI\Rightarrow OC\text{ là tt đtnt }\Delta ECF\)
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
AME=BMF=30 nha