K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\) b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\) c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\) d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\) 2. Cho A có n phần...
Đọc tiếp

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện

a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)

b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)

c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)

d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\)

2. Cho A có n phần tử. Với \(r\in Z^+\), gọi \(f\left(r;n\right)\) là số cách chọn ra k tập con của A sao cho các tập con này không có phần tử chung. Tính \(f\left(r;n\right)\) theo n biết

a) r = 1

b) r = 2

c) r = 3

d) r bất kì

3. Cho \(A=\left\{1;2;3;...;n\right\}\). Với mỗi tập X, kí hiệu m(X) là trung bình cộng các phần tử của X. Gọi S là tập các tập con khác tập rỗng của A. T = {m(X)/ \(X\in S\)}

Tính m(T)

m.n giúp với mk đang cần gấp

Hung nguyen Ace Legona Akai Haruma

0
25 tháng 8 2023

Để xác định xem tập hợp A có phải là tập con của tập hợp B hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp A có thuộc tập hợp B hay không. Tương tự, để xác định xem tập hợp B có phải là tập con của tập hợp A hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp B có thuộc tập hợp A hay không.

Tập hợp A được xác định bởi điều kiện (x-1)(x-2)(x-4)=0. Điều này có nghĩa là các giá trị của x mà khi thay vào biểu thức (x-1)(x-2)(x-4) thì biểu thức này sẽ bằng 0. Các giá trị này là 1, 2 và 4. Do đó, tập hợp A là {1, 2, 4}.

Tập hợp B được xác định bởi các ước của số 4. Số 4 có các ước là 1, 2 và 4. Do đó, tập hợp B cũng là {1, 2, 4}.

Vì tập hợp A và tập hợp B đều chứa các phần tử 1, 2 và 4, nên ta có thể kết luận rằng tập hợp A là tập con của tập hợp B và tập hợp B là tập con của tập hợp A.

Vậy, tập hợp A và tập hợp B là bằng nhau.

b: A là tập con của B

A là tập con của C

A là tập con của D và ngược lại

4 tháng 10 2019

1: Là số 432.000

23 tháng 9 2023

\(A=\left\{x\in R|1:\left|x-3\right|>3\right\}\)

Giải \(1:\left|x-3\right|>3\Leftrightarrow\left|x-3\right|>\dfrac{1}{3}\)

\(TH_1:x\ge3\\ x-3>\dfrac{1}{3}\Leftrightarrow x>\dfrac{10}{3}\left(tm\right)\)

\(TH_2:x< 3\\ x-3>-\dfrac{1}{3}\Leftrightarrow x>\dfrac{8}{3}\left(tm\right)\)

Vậy \(A=\left\{x\in R|x>\dfrac{10}{3}\right\}\) \(\Rightarrow A=\left(-\infty;\dfrac{10}{3}\right)\) (1)

\(B=\left\{x\in R|\left|x-2\right|< 2\right\}\)

Giải \(\left|x-2\right|< 2\)

\(TH_1:x\ge2\\ x-2< 2\Leftrightarrow x< 4\left(tm\right)\Rightarrow2\le x< 4\)

\(TH_2:x< 2\\ x-2< -2\Leftrightarrow x< 0\left(tm\right)\Rightarrow x< 0\)

Vậy \(B=[2;4)\) (2)

Từ (1),(2) \(\Rightarrow X=A\cap B=[2;\dfrac{10}{3})\)

Do cả 2 tập A và B đều có \(x\in R\) nên số phần từ của tập X nằm trong khoảng từ 2 đến 10/3.

 

3 tháng 9 2018

a, A k là con của B ; B k là con của A

b, A\(\subset\)B

c, A\(\subset\)B

a: A={2;-1;1}

B={-2;1}

=>B là tập con của A

b: A=(-2;4)

B={0;1;2}

=>B là tập con của A

c: A là tập con của B