Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6-n^4\right)+\left(2n^3+2n^2\right)=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4+2n^2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
\(=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-n+1-n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với mọi \(n\inℕ\)và \(n\ge1\), ta có:
\(n^2\left(n+1\right)^2=\left[n\left(n+1\right)\right]^2\)luôn là số chính phương.
Mà \(n^2-2n+2=\left(n-1\right)^2+1\)luôn không là số chính phương ( vì n>1; \(n\inℕ\))
Do đó \(n^2\left(n+1\right)^2\left(n^2-2n+1\right)\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
\(\Rightarrow n^6-n^4+2n^3+2n^2\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
Vậy nếu \(n\inℕ,n>1\)thì số có dạng \(n^6-n^4+2n^3+2n^2\)không phải là số chính phương
TÍNH CHẤT : Nếu tích của các số là một số chính phương thì mỗi số đều là một số chính phương.
Vì 2n+1 là số CP lẻ => 2n+1 : 8 dư 1 => 2n chia hết cho 8
=> n chia hết cho 4 => n chẵn => n+1 lẻ => n+1 : 8 dư1
=> n chia hết cho 8 (*)
ta có n+1+2n+1=3n+2 _(đồng dư) _ 2 (mod 3)
màn+1 và 2n+1 _(đồng dư)_ 0(hoặc)1 (mod 3)
từ đó => n+1 và 2n+1 _(đồng dư)_ 1(mod 3)
=>n chia hết cho 3 (**)
từ (*) và (**) mà (3,8)=1 => n chia hết cho 24
=> đpcm
TH1: n = 2k+1 (k∈N) (tức là n lẻ)
\(23^n\)+1971 chia 3 dư 2 => không là số chính phương
TH2: n=2k (tức là n chẵn)
\(^{23^n}\)+1971= \(23^{2k}\)+1971=> \(a^2\)(a−\(23^k\))(a+\(23^k\))= 1971 = 1.1971= 27.73
(a và 23 không chia hết cho 3 nên ta loại bớt trường hợp a−\(23^k\) , a+\(23^k\) đồng thời chia hết 3)
Giải hệ phương trình trên, được k=1 hay n=2
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Ta có:
\(A=n^2\left(n^2+n+1\right)\)
Để A là số chính phương thì \(n^2=n^2+n+1\)(1) hoặc \(n=n\left(n^2+n+1\right)\)(2) hoặc \(1=n^4+n^3+n^2\)(3)
\(\left(1\right)\Leftrightarrow n=-1\left(tm\right)\)
\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)
\(\left(3\right)\Leftrightarrow n=-1\)
Vậy n=0 hoặc n=-1
Ví dụ: Với n=1(1 thuộc N*)
=>23n+1972=231+1972=23+1972=1995 không phải là số chính phương(vô lí).
Vậy với n thuộc N* thì 23n+1972 không phải là số chính phương.