K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

A M B P P C N D Q E R H K

Giải

Gọi R là trung điểm BE. Trong \(\Delta\)BCD có P, N là trung điểm của BC và DC nên PN là đường trung bình của tam giác

\(\Rightarrow\) PN // BD và PN = \(\frac{BD}{2}\)

Tương tự RQ là đường trung bình của \(\Delta\)BED

nên RQ // BD và RQ = \(\frac{BD}{2}\)

\(\Rightarrow\) PMQR là hình bình hành. Có K là trung điểm của đường chéo PQ thì K là trung điểm của RN (hình bình hành có hai đường chéo cắt nhau tai trung điểm mỗi đường)

Trong \(\Delta\)MNR có HK là đường trung bình

\(\Rightarrow\) HK // MR và HK = \(\frac{MR}{2}\)(1)

Trong \(\Delta\)ABE có MR là đường trung bình

\(\Rightarrow\) MR // AE và MR = \(\frac{AE}{2}\) (2)

Từ (1) và (2) => HK // AE và HK = \(\frac{AE}{4}\)

30 tháng 12 2019

O I I' M B C D P Q A N E

Goi I la giao diem cua MN va CD 

-> I la trung diem cua BD

Van dung tinh chat duong trung binh doi hai Tg ABD va tg AED

=> PI // NQ 

=> PI = NQ

-> tu giac NIPQ la hinh binh hanh n

-> Mn di qua trung diem Pq

Khi MN//CD

quan sat hinh 

14 tháng 7 2018

 Bài này ko khó lắm đâu. Bạn chỉ cần nghĩ một chút thôi.

a,Nối A với C.

Xét tam giác BAC có: M là trung điểm của AB, N là trung điểm của BC

Suy ra: MN là đường trung bình của tam giác BAC

Nên MN song song với BC.(1)

Xét tam giác ACD có: P là trung điểm của CD và Q là trung điểm của AD.

Do đó: PQ là đường trung bình của tam giác ACD

Nên PQ song song với BC. (2)

Từ (1) và (2), ta có: MN song song với PQ.

b, Xét tam giác MQP có: I là trung điểm của MQ, K là trung điểm của MP

Vì thế IK là đường trung bình của tam giác MQP

Suy ra: IK song song với PQ.

Tương tự, KH là đường trung bình của tam giác MNP

Nên KH song song với MN.

Mà MN song song với PQ

Do đó: KH song song với PQ

Qua điểm K nằm ngoài đường thẳng PQ, có 2 đường thẳng IK,KH cùng song song với PQ nên theo tiên đề Ơclít , 3 điểm I,K,H thẳng hàng.

Chúc bạn học tốt.

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)