Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^2+n+1\)
\(=n\left(n+1\right)+1\)
Vì n(n+1) là tích của hai số tự nhiên liên liếp nên có 1 số chẵn
nên n(n+1) là số chẵn.Suy ra:n(n+1)+1 là số lẻ và ko chia hết cho 2
Vì n(n+1) chỉ có tân còn là:0,2,6 nên n(n+1)+1 chỉ có tận cùng là:1,3,7 ko chia hết cho 5
a) A = n2 + n + 1
A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên \(n.\left(n+1\right)⋮2\)
Mà \(1⋮̸2\)
Do đó, \(A⋮2̸\)
b) A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
Do đó A chỉ có thể tận cùng là 1; 3; 7, không chia hết cho 5 (đpcm)
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
A=n2+n+1=n.n+n+1=n(n+1)+1
a,Vì n và (n+1) là stn liên tiếp nên một trong 2 số đó là số chẵn.
=>n(n+1) chia hết cho 2.
=>n(n+1)+1 ko chia hết cho 2
=>a ko chia hết cho 2(đpcm)
b,Vì n và (n+1) là stn liên tiếp nên chữ số tận cùng của chúng có thể là 0,2,6.
=>n(n+1)+1 có thể có chữ số tận cùng là1,3,7
=>a ko chia hết cho 5(đpcm)
\(n^2+n+1=n.\left(n+1\right)+1\)
n.(n+1) lầ 2 số tự nhiên liên tiếp nên tích chúng chia hết cho 2.
1 ko chia hết cho 2.
Vậy......
b)Sử dụng dư hoặc dùng 5k loại.
Chúc em học tốt^^
Ta có : A = n2 + n + 1 = n(n+1) +1
+) Chứng minh A \(⋮̸\) 2
=> Giả sử n(n + 1 ) \(⋮\)2
Nhưng 1 \(⋮̸\) 2
=> A \(⋮̸\) 2
+) Chứng minh A \(⋮̸\) 5
=> Giả sử n(n+1) \(⋮\) 5
Nhưng 1 \(⋮̸\) 5
=> A \(⋮̸\) 5
bạn bấm vào dòng chữ xanh này nhé
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Ta có:
n2+n+1=n(n+1)+1
Vì n(n+1)là tích 2 số tự nhiên liên tiếp lên n(n+1)\(⋮\)2
n(n+1)là số chãn
n(n+1)+1 là số lẻ
n(n+1)+1\(⋮̸\)2
ta có : n^2 + n+1 = n(n+1) +1 . vì n(n+1) là tích 2 sô tư nhiên liên tiếp nên chia hêt cho 2 với mọi n thuộc N . mà 1 không chia hết cho 2 nên n(n+1) + 1 ko chia hết cho 2 hay (n^2 +n +1) ko chia hết cho 2 (đpcm)