Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-3-2n^2+2n-n^2-5n\)
\(=5n-3-3n^2-5n\)
\(=-3-3n^2\)
\(=-3\left(n^2+1\right)\) chia hết cho 3 nếu \(n\in Z\)
Nếu \(n\in Q\) thì sai đề
a) ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n-6=6n-6=6\left(n-1\right)⋮6\)
\(\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\)
vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) (đpcm)
b) ta có : \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-\left(n^2-5n-7n+35\right)\)
\(=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮3⋮4\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\) và \(3\)
vậy \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\) và \(3\) (đpcm)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-\left(n^2+2n-3n-6\right)\\ =n^2+5n-\left(n^2-n-6\right)\\ =n^2+5n-n^2+n+6\\ =\left(n^2-n^2\right)+\left(5n+n\right)+6\\ =6n+6\\ =6\left(n+1\right)⋮6\)
vậy ...
\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-\left[\left(n-6\right)^2-1\right]\\ =n^2-1-\left(n-6\right)^2+1\\ =n^2-\left(n-6\right)^2\\ =\left(n+n-6\right)\left(n-n+6\right)\\ =6\left(2n-6\right)\\ =6\cdot2\left(n-3\right)\\ =12\left(n-3\right)⋮4\text{ và }3\)
vậy ...
0,1 0,2 0,3 0,4..........0.9
minh chi biet la so lon hon 0 ma nho hon 1 thoi