Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
neu m, n la cac so tu nhien thoa man 4m\(^2\)+m = 5n\(^2\)+n thi m-n va 5m +5n +1 la so chinh phuong
\(\frac{n^2+n+1}{n^4+n^2+1}=\frac{n^2+n+1}{n^4+2n^2+1-n^2}=\frac{n^2+n+1}{\left(n^2+1\right)^2-n^2}\)
\(=\frac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\frac{1}{n^2-n+1}\)
Vậy \(\frac{n^2+n+1}{n^4+n^2+1}\) không là phân số tối giản với mọi \(n\inℕ^∗\)
\(A=\left(x^2+y^2+z^2\right)\left[\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\right]+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)^2+2\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\) là một số chính phương (đpcm)
ta co n^3+3n^2-n-3=n^2(n+3)/(n+3)=(n^2-1)(n+3)=(n-1)(n+1)(n+3)
doi voi (n+1)(n+3) la hai so lien tiep cach nhau 2 don vi thi n la so le se chia het 8
nhung voi n-1 neu n=1 thi ket qua cua ca h se bang 0 nen toi thay de bai nay thieu dieu kien cua n phai la so le khac 1
Ta có công thức quen thuộc: \(B=1+2+3+....+n=\frac{n\left(n+1\right)}{2}\)
Lại có: \(2A=\left(n^5+1\right)+\left[\left(n-1\right)^5+2^5\right]+\left[\left(n-2\right)^5+3^5\right]+....+\left(1+n^5\right)\)
Nhận thấy mỗi số hạng đều chia hết cho n+1 nên \(2A⋮n+1\left(1\right)\)
Lại có 2A-2n5=\(\left[\left(n-1\right)^5+1^5\right]+\left[\left(n-2\right)^2+2^5\right]+....\)chia hết cho n
Do 2n5 nên 2A chia hết cho n (2)
Từ (1) (2) => 2A chia hết cho n(n+1) do đó: 2A chia hết cho 2B => A chia hết cho B (đpcm)
Xét n^2+n+1 = n^2+n+n+1-n = n.(n+1) + (n+1) - n = (n+1).(n+1) - n = (n+1)^2 - n ( KO là số chính phương )
( ^ là dấu mũ ; . là dấu nhân nhé bạn )