Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(T=3\cdot5\cdot7\cdot.....\cdot49\)
\(\Rightarrow A\cdot T=\frac{T}{2}+\frac{T}{3}+\frac{T}{4}+....+\frac{T}{50}\)
\(2^4\cdot B\cdot T=\frac{2^4T}{2}+\frac{2^4T}{3}+\frac{2^4T}{4}+....+\frac{2^4T}{50}\left(1\right)\)
Tất cả các số hạng của (1) đều là stn ngoại trừ \(\frac{2^4T}{5}\)
\(\Rightarrow VP\notinℕ\Rightarrow VT\notinℕ\)
Mà \(2^4\inℕ\Rightarrow T\inℕ\)
\(\Rightarrow A\notinℕ\left(đpcm\right)\)
3.a) tổng các cs của tử là 3 nên chia hết cho 3
b) tổng các cs của rử là 9 nên chia hết cho 9
gọi ƯCLN (16n+3,12n+2) là d
16n+3 chia hết cho d => 48n+9 chia hết cho d
12n+2 chia hết cho d => 48n + 8 chia hết cho d
=> 48n+9 - 48n + 8 chia hết cho d
=> 1 chia hết cho d
=> d\(\in\){-1;1}
=> \(\frac{16n+3}{12n+2}\)tối giản
Để A là phân số tối giãn thì \(16n+3⋮12n+2\)(đặt phân số đó là A nhé)
\(=>16n+3⋮12n+2\)
\(=>48n+9⋮48n+8\)
\(=>48n+9-48n-8⋮48n+8\)
\(=>4⋮12n+2\)
1/ Để cho \(\left(n^2+3\right)⋮\left(n+1\right)\) thì
\(A=\frac{n^2+3}{n+1}\) là 1 số nguyên
Ta có: \(A=\frac{n^2+3}{n+1}=n-1+\frac{4}{n+1}\)
Để A nguyên thì (n + 1) phải là ước nguyên của 4 hay
\(\left(n+1\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-5,-3,-2,0,1,3\right)\)
3/10=3/9*10
3/11=3/10*11
3/12=3/11*12
3/13=3/12*13
3/14=3/13*14
suy ra 3/10+3/3/11+....+3/14 nhỏ hơn 3/9*10+....+3/13*14
suy ra 3/9*10 + 3/10*11+....+3/13*14
=1/9-1/10+....+1/13-1/14
=1/9-1/14
tự viết kết quả nhé
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>1\) (1)
Ta lại có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
< \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
< \(1-\frac{1}{100}< 1\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 1+1\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 2\) (2)
Từ (1) và (2) => \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)không là số tự nhiên