Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...

1) a) để A là số nguyên thì \(n\ne1\)
b) để \(A=\frac{5}{n-1}\)là số nguyên thì n-1 là ước nguyên của 5
\(n-1=1\Rightarrow n=2\)
\(n-1=5\Rightarrow n=6\)
\(n-1=-1\Rightarrow n=0\)
\(n-1=-5\Rightarrow n=-4\)
kl : n\(\in\){ 2; 6; 0; -4 }
2) Gọi d là ước chung lớn nhất của n và n+1
\(\Rightarrow n⋮d;n+1⋮d\)
\(\Rightarrow\left(n+1-n\right)⋮d\)
\(\Rightarrow1⋮d\)
Vì ước chung lớn nhất của n và n+1 là 1 nên n/n+1 là phân số tối giản
3) Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức ta có
\(\frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..............................
\(\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}< 1\)
\(\Rightarrow\)\(1-\frac{1}{50}< 1\)
\(\Rightarrow\)\(\frac{49}{50}< 1\Rightarrow dpcm\)
4) \(S=\frac{2^{2009}-1}{1-2^{2009}}\)
Ai thấy đúng thì ủng hộ mink nha !!!

CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^
\(a)\) Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~

Câu a )
S = 5 + 52 +..... + 52012
=> S \(⋮5\)
S = 5 + 52 +..... + 52012
S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )
S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )
S = 5 x 26 + 52 x 26 + ................ + 52010 x 26
S = 26 ( 5 + 52 + .... + 52010 )
=> S\(⋮26\)
=>\(S⋮13\)( do 26 = 13 x 2 )
Do ( 5 , 13 ) = 1
=> \(S⋮5x13\)
=> \(S⋮65\)

Làm bài hình thôi nhé.
Hình b tự vẽ.
a/ Ta có: góc xOy + góc yOz = 180 độ (kề bù)
=> 120 + góc yOz = 180
=> góc yOz = 180 - 120 = 60 độ
b/ Vì Om là pgiác góc yOz => góc yOm = góc zOm = góc yOz : 2 = 60 : 2 = 30 độ
Ta có: góc xOm = góc xOy + góc yOm = 120 + 30 = 150 độ
1/ Để cho \(\left(n^2+3\right)⋮\left(n+1\right)\) thì
\(A=\frac{n^2+3}{n+1}\) là 1 số nguyên
Ta có: \(A=\frac{n^2+3}{n+1}=n-1+\frac{4}{n+1}\)
Để A nguyên thì (n + 1) phải là ước nguyên của 4 hay
\(\left(n+1\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-5,-3,-2,0,1,3\right)\)
Câu 2 chứng minh cái đó sao b