Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Xét n tích \(x_1x_2,x_2x_3,...,x_nx_1\), mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng bằng 0 nên số tích có giá trị 1 bằng số tích có giá trị -1, và đều bằng \(\frac{n}{2}\). Vậy n chia hết cho 2.
Bây giờ ta sẽ chứng minh rằng số tích có giá trị -1 cũng là số chẵn. Thật vậy, xét
\(A=\left(x_1x_2\right)\left(x_2x_3\right)...\left(x_{n-1}x_n\right)\left(x_nx_1\right).\)
Ta thấy \(A=x_1^2x_2^2...x_n^2\) nên \(A=1>0\) chứng tỏ số tích có giá trị -1 cũng là số chẵn, tức là \(\frac{n}{2}\) là số chẵn, do đó n chia hết cho 4.
bổ sung thêm x1.x2...xn.x1=1
x1.x2+x2.x3+...+xn.x1=0
mà trong các tích có các tích bằng 1 hoặc -1=>số số 1 và -1 bằng nhau
=>n chia hết cho 2
=>n=2k
vì tích bằng 1=>số các số -1 là số chẵn
=>k chia hết cho 2
=>k=2q
=>n=2.2q=4q chia hết cho 4
=>đpcm
bổ sung thêm x1.x2...xn.x1=1
x1.x2+x2.x3+...+xn.x1=0
mà trong các tích có các tích bằng 1 hoặc -1=>số số 1 và -1 bằng nhau
=>n chia hết cho 2
=>n=2k
vì tích bằng 1=>số các số -1 là số chẵn
=>k chia hết cho 2
=>k=2q
=>n=2.2q=4q chia hết cho 4
=>đpcm
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4
các bạn bày cho mik với nhế cảm ơn
Vì n số x1,x2,x3,... ,xn mỗi số bằng 1 hoặc -1.
=> n tích x1x2; x2x3; x3x4; ...;xnx1 mỗi tích bằng 1 hoặc -1
Mà tổng n h trên bằng 0
=> số tích=1 sẽ bằng số tích= -1 (=n:2)
=> n chia hết cho 2
Ta thấy: (x1x2) (x2x3) (x3x4) ...(xnx1) = (x1)2. (x2)2 .(x3)2... (xn)2 =1 >0
=> số tích bằng -1 phải là số chẵn
=> n:2 là số chẵn => nchia hết cho 4