K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

bổ sung thêm x1.x2...xn.x1=1
x1.x2+x2.x3+...+xn.x1=0
mà trong các tích có các tích bằng 1 hoặc -1=>số số 1 và -1 bằng nhau
=>n chia hết cho 2
=>n=2k
vì tích bằng 1=>số các số -1 là số chẵn
=>k chia hết cho 2
=>k=2q
=>n=2.2q=4q chia hết cho 4
=>đpcm

9 tháng 3 2018

Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4

các bạn bày cho mik với nhế cảm ơn

14 tháng 11 2021

giải được tui cho chàng vỗ tay

14 tháng 11 2021

cho 5 tỷ thì giải :>>

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$

Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$

Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$

Tổng số số hạng: $n=k+k=2k$ 

Lại có:

$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$

$\Rightarrow k$ chẵn 

$\Rightarrow n=2k\vdots 4$

22 tháng 11 2021

bạn thông minh ghê

5 tháng 7 2019

Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo link trên.

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:

Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$

Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng

$\Rightarrow n$ chia hết cho $2$

Mặt khác:

\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$

$\Rightarrow \frac{n}{2}$ chẵn

$\Rightarrow n$ chia hết cho $4$ (đpcm)

 

5 tháng 7 2019

Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo link trên nhé!

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-n-so-x1-x2-xn-moi-so-nhan-gia-tri-1-hoac-1chung-minh-rang-neu-x1x2-x2x3-xnx1-0-thi-n-chia-het-cho-4.3190495787733

Tham khảo :

Lời giải:
Vì x1,x2,...,xnx1,x2,...,xn nhận giá trị 11 hoặc −1−1 nên x1x2,x2x3,...,xnx1x1x2,x2x3,...,xnx1 nhận giá trị 11 hoặc −1−1

Để tổng x1x2+...+xnx1=0x1x2+...+xnx1=0 thì số số hạng nhận giá trị 11 bằng số số hạng nhận giá trị −1−1

Gọi số số hạng nhận giá trị 11 và số số hạng nhận giá trị −1−1 là kk

Tổng số số hạng: n=k+k=2kn=k+k=2k 

Lại có:

(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1(−1)k1k=x1x2.x2x3...xnx1=(x1x2...xn)2=1

⇒k⇒k chẵn 

⇒n=2k⋮4

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)