K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

nếu n chia hết cho 3 thì n^2 chia hết cho 3 hay n chia cho 3 dư 0

nếu n không chia hết cho 3

đặt n=3k+1 hoặc 3k+2

n^2=9k^2+6k+1 hoặc n^2=9k^2+12k+4

suy ra n^2 chia cho 3 dư 1

vậy...

tick mik nha

28 tháng 8 2021

Bạn có thể cho mình bít vì sao lại suy ra n2 chia cho 3 dư 1 ko . Cảm ơn bạn

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0
7 tháng 2 2017

 cau 1 minh ra 6

8 tháng 2 2017

Cau 1 ra d­u 6 . minh hoc rui day la bai dong du

5 tháng 8 2017

mình biết mỗi bài 4:

A={2007}

mình đi xin bn đó

6 tháng 8 2017

cảm ơn bạn Xử Nữ các bạn khác giúp mình với

26 tháng 7 2016

Đặt a=3k+r

a2=(3k+r)2=(3k+r).(3k+r)

                 = 9k2+3kr+3kr+r2

                 = 9k2+6kr +r2

Vì 9k2 chia hết cho 3 và 6kr chia hết cho 3 nên số dư của phép chia acho 3 là số dư của r2 cho 3 

Vậy r có thể là 0;1;2

Nếu r=0=>r2=0=> số dư là 0

Nếu r=1=>r2=1=> số dư là 1 

Nếu r=2=>r2=4 => số dư là 1 

Vậy số dư của phép chia a2 cho 3 là : 0;1

20 tháng 1 2017

Gọi số a có dạng:3k:3k+1:3k+2, ta có:

+trường hợp 1:a=3k thì:

a2=(3k)2

= 3k.3k

=9.k2 chia hết cho 3

Suy ra:9.k2 chia cho 3 dư 0.

+Trường hợp 2:a=3k+1 thì:

a2=(3k+1)2

= (3k+1)(3k+1)

=9k2 +3k+1+3k

=9k.k+6k+1 chia cho 3 dư 1

+Trường hợp 2:a=3k+2 thì:

a2=(3k+2)2

=(3k+2)(3k+2)

=9k2+6k+6k+4

=9k2+6k+6k+3+1 chia cho 3 dư 1

Vậy với \(a\in N\) thì a2 chia cho 3 có số dư là:0;1;1