Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1+2+3+.....+(n-1)+n+(n-1)+....+3+2+1=k2
<=>(1+1)+(2+2)+(3+3)+....+[(n-1)+(n-1)]+n=k2
<=>[2+4+6+......+(n-1+n-1)]+n=k2
<=>[2+4+6+......+(2n-2)]+n=k2
<=>2(1+2+3+....+(n-1)]=k2
từ 1 đến n-1 có:(n-1)-1+1=n-1(số hạng)
=>1+2+3+.....+n-1=\(\frac{\left[\left(n-1\right)+1\right].\left(n-1\right)}{2}=\frac{n\left(n-1\right)}{2}\)
=>\(2.\frac{n\left(n-1\right)}{2}+n=k^2\)
\(\Rightarrow\frac{2n\left(n-1\right)}{2}+n=k^2\Rightarrow n\left(n-1\right)+n=k^2\Rightarrow n^2-n+n=k^2\Rightarrow n^2=k^2\Rightarrow n=k\)
vậy k=n
mik ko biết
ai tích mình tích lại
ai tích lại mình tích lìa nhà nhà
Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath
Bài 1 em tham khảo tại link trên nhé.
3n+2 - 2n+2 + 3n - 2n
= 3n.(32+1) - 2n(22+1)
= 3n.10 - 2n.5
Có: 3n.10 có tận cùng là 0
Vì 2n chẵn
=> 2n.5 có tận cùng là 0
=> 3n.10 - 2n.5 có tận cùng là 0 => chia hết cho 10
=> 3n+2-2n+2+3n-2n chia hết cho 10 (đpcm)
a) Có f(2) = 1.f(1)=1.1=1
f(3) = 2.f(2)=2.1=2
f(4) = 3 .f(3) = 3.2.1=6
f(5) = 4.f(4) = 4.3.2.1 = 24
f(6) = 6.f(5)=5.4.3.2.1=120
b) Tiếp tục tính như phần a ta có :
* Số tự nhiên k lớn nhất để 5\(^k\)là ước của f(101) là số thừa số 5 khi phân tích 1.2.3.4.5........98.99.100 ra thừa số nguyên tố ,tức là tổng các bội số của 5 ,của 5\(^2\)trong dãy số 1,2,3,4,5,...,98,99,100
* Các bội số của 5 trong dãy trên là : 5,10,15,............,100 gồm 100 : 5 = 20 số ; trong đó các bôi của 5\(^2\)là 25,50,75,100 có 4 số
* Vậy số thừa số 5 khi phân tích 1.2.3.4.5..........98.99.100 ra thừa số nguyên tố là : 20 + 4 = 24
+ Vậy số k lớn nhất để 5 là ước của f(101) là 24
f(6)=120
số tự nhiên k lớn nhất là 24
k mk nha mk gửi lời giải chi tiết cho ^^
chúc bạn hok tốt ná!