Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, p là số nguyên tố lớn hơn 3 nên p lẻ
=> p^2 lẻ
=? p^2+2003 chẵn => nó có nhiều hơn 2 ước (1;2; chinhsnos...)
=> p^2+2003 là hợp số
2. a) Nếu n = 3k +1 thì n2 + (3k+1) (3k+1) hay n2 = 3k(3k+1)+ 3k +1.
Rõ ràng n2 chia co 3 dư 1.
Nếu n= 3k+2 thì n2 = (3k+2) (3k+2) hay n2 =3k(3k+2)+ 2 ( 3k + 2)
= 3k (3k+2 ) + 6k +4.
2 số hạngđầu chia hết cho 3, số hạng cuối chia cho 3 dư 1 nên n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. vậy p2 chia cho 3 duw1 tức là p2 = 3k+1 do đó p2 + 2018 = 3k +1 + 2018 = 3k + 2019 cha hết cho 3. Vậy p2 + 2018 là hợp số
Tớ xin llõi, tớ muốn giúp cậu lắm nhưng tớ chua học, xin lõi nhé!
a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1
+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1
Vậy...
b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số
k minh nha
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
câu 1 . ko biết
câu 2 . neu p > 3 thi dung la p^2 se la 1 so le
trong day so nguyen to chi co duy nhat 1 so chan do la 2
suy ra p^2 + 2003 se la 1 so chan (le + le bang chan )
tu do suy ra p^2+2003 la hop so
1, Ta có:
n.n = n2
Ta thấy 1 số chính phương chỉ chia 3 dư 0 hoặc 1 nên n2 chia 3 dư 0 hoặc 1
Mà n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1 hay n.n chia 3 dư 1 (ĐPCM)
N không chia hết cho 3 có dạng 3k+1 ; 3k+2 .Với N=3k+1 .Suy ra N ^2=(3k+1).(3k+1)=3k.(3k+1)+1.(3 k+1)=3k.3k+3k+3k+1 = 3k.(3k+1+1)+1:3 dư 1 . Với N=3k+2 . Suy ra N^2=(3k+2).(3k+2)=3k.(3k+2)+2.3k+4=3k.(3k+2+2)+4:3 dư1 Vậy N^2:3 dư1 khi va chỉ khi N khong chia hết cho 3 B) Vì P là số tự nhiên >3. Suy ra p^2 :3 dư1 ( ở ý a) . Suy ra p^2=3 k+1 . Thay p^2 +2003=3k+1+2003=3k+2004 chia hết cho 3 . Suy ra c^2 + 2003 là hợp số