K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

 n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

tk nha

2 tháng 12 2017

Theo đề bài ta có:

\(n⋮3\)

\(\Rightarrow\orbr{\begin{cases}n:3dư1\\n:3dư2\end{cases}}\)

TH1:\(n:3dư1\)

\(\Rightarrow n=3k+1\left(k\in Z\right)\)

\(\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1:3\text{dư}1\left(1\right)\)

TH2:\(n:3dư2\)

\(\Rightarrow n=3k+2\left(k\in Z\right)\)

\(\Rightarrow n^2=\left(3k+2\right)^2=9k^2+12k+4:3\text{dư}1\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow n:3\text{dư}1\left(ĐPCM\right)\)

CHÚC BẠN HỌC TỐT!!! :)

13 tháng 7 2016

Bài 1 có nhầm đề không vậy 

10 là ước của của 3^n+4 +1=>3^n+4  + 1 chia hết cho 10 rồi

2 tháng 3 2017

ko bt ban oi

20 tháng 11 2019

Các cụ cho con bỏ câu này

20 tháng 11 2019

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2nBài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết...
Đọc tiếp

Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2n

Bài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết cho 9 và x - y = 6 10, 3x74y : hết cho 9 và x - y = 1 11, 20x20x20x : hết cho 7

Bài 3: CMR a, Trong 5 số tụ nhiên liên tiếp có 1 số : hết cho 5 b, ( 14n + 1) . ( 14n + 2 ) . ( 14n + 3 ) . ( 14n + 4 ) : hết cho 5 ( n thuộc N ) c, 88...8( n chữ số 8 ) - 9 + n : hết cho 9 d, 8n + 11...1( n chữ số 1 ) : hết cho 9 ( n thuộc N* ) e, 10n + 18n - 1 : hết cho 27

Bài 4. 1, Tìm các số tự nhiên chia cho 4 dư 1, còn chia cho 25 dư 3 2, Tìm các số tự nhiên chia cho 8 dư 3, còn chia cho 125 dư 12

8
28 tháng 2 2018

giúp tui với 

tui đang cần lắm đó bà con ơi

2 tháng 6 2021

em mới lớp 5 seo anh gọi em là: BÀ CON

24 tháng 7 2015

chắc phải làm dài hơn đấy

24 tháng 7 2015

ngo le ngoc hoa:Quản lí của olm.

AH
Akai Haruma
Giáo viên
3 tháng 12 2017

Lời giải:

Vì $n$ không chia hết cho $3$ nên $n$ có thể có hai dạng:

Dạng 1: \(n=3k+1(k\in\mathbb{N})\)

Khi đó:
\(n^2=(3k+1)^2=9k^2+6k+1=3(3k^2+2k)+1\) chia 3 dư 1

Dạng 2: \(n=3k+2(k\in\mathbb{N})\)

Khi đó:
\(n^2=(3k+2)^2=9k^2+12k+4=3(3k^2+4k+1)+1\) chia 3 dư 1

Tổng hợp cả hai dạng trên ta suy ra với mọi số tự nhiên n không chia hết cho 3 thì $n^2$ chia $3$ dư $1$

3 tháng 12 2017

hay dảng cho minh ở chỗ 6k với mình ko hiểu ở đó