Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng phương pháp phản chứng
Giả sử n chia hết cho 5
=>n có dạng 5k
=>\(\text{n}^2+\text{n}+1=25k^2+5k+1=5k\left(5k+1\right)+1\)
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5
=>25k^2+5k+1 ko chia hết cho 5
(đpcm)
\(\text{n^2+n+1 = n(n+1) +1 }\)
vì n(n+1) luôn là số chẵn suy ra n(n+1)+1 luôn lẻ --> ko chia hết cho 4
Dễ mà
Ta có: \(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^n\cdot4^3+4^n\cdot4^2-4^n\cdot4-4^n\)
\(=4^n\left(4^3+4^2-4-1\right)=4^n\cdot75\)
Biến đổi tí xíu ta có:
\(4^n\cdot75=4^{n-1}\cdot4\cdot75=\left(4^{n-1}\cdot300\right)⋮300\)
a,
$5^5-5^4+5^3$
$=5^3(5^2-5+1)$
$=5^3 . 21$
Mà $21 \vdots 7$
$\to 5^3 . 21 \vdots 7$
Nên $5^5-5^4+5^3 \vdots 7$ ( đpcm)
a) 55 - 54 + 53 = 53 ( 52 - 5 + 1)
= 53 . 21
Mà 21 chia hết cho 7 nên 53 . 21 chia hết cho 7
b) 76 + 75 - 74 = 74( 72 + 7 -1)
= 74 . 55
Mà 55 chia hết cho 11 nên 74 . 55 chia hết cho 11
Ý c tương tự như trên nhé!!
d) 106 - 57 = (2.5)6 - 57
= 26 . 56 - 57
= 56 ( 26 - 5)
= 56 . 59 chia hết cho 59
e) 3n+2 - 2n+2 + 3n - 2n Bạn viết sai nên mik sửa như này nha)
= 3n . 32 - 2n . 22 + 3n - 2n
= ( 3n . 32 + 3n) - (2n . 22 + 2n )
= 3n( 32 + 1) - 2n ( 22 + 1)
= 3n . 10 - 2n . 5
Ta thấy 10 chia hết cho 10 nên 3n . 10 chia hết cho 10 (1)
2 . 5 chia hết cho 10 nên 2n . 5 chia hết cho 10 (2)
Từ (1) và (2) => 3n . 10 - 2n .5 chia hết cho 10 với mọi n thuộc N*
vậy.......
f) 817 - 279 - 913
= (34)7 - ( 33)9 - (32)13
= 328 - 327 - 326
(đến đây làm tương tự ý a với ý b nhé)
Mik thấy lần sau nếu ý nào k làm đc bạn mới hỏi nhé hoặc k biết làm hết thì hỏi từng ý 1 thôi chứ bn hỏi nhiều như này người ta ngại trả lời lắm, mik cũng ngại nữa.
Nãy giờ mik viết mỏi tay mỏi mắt lắm rồi bn nhớ k cho mik nhé!!!
n 2+n+1 = n﴾n + 1﴿ +1
. Vì n﴾n+1﴿ là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n﴾n+1﴿ + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n﴾n+1﴿ + 1 không chia hết cho 4 và 5
Vậy n 2+n+1 không chia hết cho 4 và 5.
Từ công thức:1+2+3+4+..........+n=n(n+1):2
=>(1+2+3+4+............+n)-7
=n.(n+1):2-7
Mà n .(n+1) là tích hai số liên tiếp nên chỉ có tận cùng là:0,2,6
=>n.(n+1):2 có tận cùng là:5,0,6,1,3,8
=>n.(n+1):2-7 có tận cùng là:8,3,9,4,6,1 không chia hết cho 10
Vậy (1+2+3+4+...........+n)-7 không chia hết cho 10 với mọi n(đpcm)