Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)
Hình như hiễn thị cô ạ, thêm (<AC.Từ B vẽ đường thẳng vuông góc với AB,từ C kẻ đường thẳng vuông góc với AC, hai đường này cắt nhau tại I. Gọi E là giao điểm của AI và BC.)
Thái sơn năm nay chắc lên lớp 8 rồi nên tớ làm theo cách lớp 8 nhé!
a) Xét tứ giác ABCI
\(\Rightarrow\widehat{A}+\widehat{ABI}+\widehat{ACI}+\widehat{BIC}=360^o\left(dl\right)\)
\(\Leftrightarrow90^o+90^o+90^o+\widehat{BIC}=360^o\)
\(\Leftrightarrow\widehat{BIC}=360^o-\left(90^o+90^o+90^o\right)=90^o\)
Ta dễ dàng chứng minh được AC//BI ( \(\widehat{BAC}+\widehat{ABI}=90^o+90^o=180^o\) Nằm ở vị trí trong cùng phía bù nhau)
Ta dễ dàng chứng minh được AB//CI ( \(\widehat{ACI}+\widehat{BIC}=90^o+90^o=180^o\)Nằm ở vị trí trong cùng phía bù nhau)
Xét \(\Delta ABC\)và \(\Delta BIC\)có
\(\widehat{CBI}=\widehat{ACB}\left(AC//BI\right)\)
BC là cạnh chung
\(\widehat{ICB}=\widehat{CBA}\left(AB//CI\right)\)
=> \(\Delta ABC\)=\(\Delta BIC\)(G-C-G)
=> AC = BI
=> AB = CI
Xét tứ giác ABCI
Có \(\widehat{BAC}=\widehat{ABI}=\widehat{ACI}=\widehat{BIC}=90^o\)
VÀ AC = BI ; AB = CI
=> Tứ giác ABCI là hình chữ nhật
=>Hai đường chéo BC và AI cắt nhau tại E
=> E là trung điểm của BC và AI
\(\Rightarrow AE=\frac{1}{2}BC\left(DPCM\right)\)
Câu b,c tối mình sẽ suy nghĩ sau
Ta có hình vẽ sau:
a) Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)
Xét ΔABO và ΔACO có:
AO: cạnh cung
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
OB = OC (gt)
=> ΔABO = ΔACO (đpcm)
b) Vì AK // BC(gt) => \(\widehat{KAB}=\widehat{ABO}\) (so le trong)
Mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{KAB}=\widehat{ACB}\) (*)
Vì ΔABO = ΔACO (ý a) => \(\widehat{A_1}=\widehat{A_2}\)
mà \(\widehat{A_1}=\widehat{ABK}\) (so le trong do AK // BC)
=> \(\widehat{A_2}=\widehat{ABK}\) (**)
Xét ΔABK và ΔACO có:
\(\widehat{KAB}=\widehat{ACB}\) (*)
AB = AC (gt)
\(\widehat{A_2}=\widehat{ABK}\) (**)
=> ΔABK = ΔACO (g.c.g)
=> AK = OC (đpcm)
Kẹo dẻo
à mính
Kẹo dẻo