Cho một khối lập phương biết rằng tăng độ dài cạnh của khối lập phương thêm 2cm thì thể...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

Sửa xíu: \(\overrightarrow{AM}=k\overrightarrow{AC'}\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

10 tháng 3 2019

18 tháng 3 2016

C' C B N B' D' A' A D M b a

Đặt \(\overrightarrow{AB}=\overrightarrow{a}\) , \(\overrightarrow{AD}=\overrightarrow{b}\) ,\(\overrightarrow{AA'}=\overrightarrow{c}\) 

Với \(\begin{cases}\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|=1\\\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\end{cases}\)

Suy ra \(\overrightarrow{A'C}=\overrightarrow{AC}-\overrightarrow{AA'}=\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}\)

Từ giả thiết suy ra \(\frac{AM}{AD}=\frac{B'N}{B'B}\)

Do đó

\(\overrightarrow{AM}=k.\overrightarrow{b}\) , \(\overrightarrow{AN}=\overrightarrow{a}+\left(1-k\right).\overrightarrow{c}\)

Ở đây, \(k=\frac{AM}{AD}=\frac{B'N}{B'B}\)

Suy ra :

\(\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\overrightarrow{a}-k.\overrightarrow{b}+\left(1-k\right).\overrightarrow{c}\)

Khi đó :

\(\overrightarrow{MN}.\overrightarrow{A'C}=\left(\overrightarrow{a}-k.\overrightarrow{b}+\left(1-k\right).\overrightarrow{c}\right).\left(\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}\right)\)

 

                  \(=1-k+k-1=0\)

Do đó : \(MN\perp A'C\)

20 tháng 4 2016

Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)

\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)

\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)

\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)

\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)

Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng

25 tháng 5 2017

a)
Với \(n=1\).
\(n^5-n=1^5-1=0\).
Do 0 chia hết cho 5 nên điều cần chứng minh đúng với n = 1.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(k^5-k⋮5\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Thật vậy:
\(\left(k+1\right)^5-\left(k+1\right)=C^0_5k^0+C^1_5k+...+C^5_5k^5-k-1\)
\(=1+C^1_5k+...+k^5-k-1\)
\(=C^1_5k+...+C^4_5k^4+k^5-k\)
Do mỗi \(C_5^1;C^2_5;C^3_5;C^4_5\) đều chia hết cho 5 và do gải thiết quy nạp \(k^5-k⋮5\) nên \(C^1_5k+...+C^4_5k^4+k^5-k\) chia hết cho 5.
Vì vậy: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Vậy điều phải chứng minh đúng với mọi n.

25 tháng 5 2017

b)
Tổng bình phương 3 số tự nhiên liên tiếp là: \(n^3+\left(n+1\right)^3+\left(n+2\right)^3\).
Ta cần chứng minh \(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9,\forall n\in N^{\circledast}\).
Với n = 1.
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3=1^3+2^3+3^3=36\).
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với n = k.
Nghĩa là: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3⋮9\)
Thật vậy:
\(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+3.3k^2+3.k.3^2+3^3\)
\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81\)
Theo giả thiết quy nạp \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\)\(9k^2+27k+81=9\left(k^2+3k+9\right)⋮9\).
Nên \(\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81⋮9\).
Vậy điều phải chứng minh đúng với mọi n.