K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

Đáp án C

Gọi H là trọng tâm tam giác đều ABC có diện tích S A B C = a 3 2  

A 1  cách đều A, B, C

 

⇒ α = 60 o

3 tháng 6 2018

Đáp án C

14 tháng 12 2018

Chọn D

18 tháng 11 2018

Chọn D

19 tháng 8 2023

Để tính toán có thể phân tích khối A'.BCC'B', ta có thể sử dụng công thức: V = (1/3) * S * h, trong đó V là có thể phân tích, S là đáy phân tích và h là chiều high of the block.

Trước tiên, ta cần tính diện tích đáy S. Với diện tích tam giác đều A'ABC, diện tích đáy là diện tích tam giác ABC. Ta có công thức tính diện tích tam giác đều là S = (a^2 * √3) / 4.

Giờ ta cần tính chiều cao h. Theo đề bài, cosα = 1/√3. Chúng ta biết rằng cosα = h/AB = h/a. Từ đó suy ra h = a/√3.

Tiếp theo, ta thay vào công thức thể tích V = (1/3) * S * h:
V = (1/3) * ((a^2 * √3)/4) * (a / √3)
= (a^3 * √3) / (12√3)
= a^3 / 12

Do đó, có thể phân bổ khối A'.BCC'B' là a^3/12.

25 tháng 10 2017

10 tháng 3 2017

12 tháng 6 2018