Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Vì v → 2 hướng chếch lên trên hợp với v → 2 góc 60 ° nên p → 1 ; p → 2 tạo với nhau một góc 60 °
⇒ p 2 = p 1 2 + p 2 2 + 2 p 1 p 2 cos α
⇒ p = 8 2 + 6 2 + 2.8.6 cos 60 0 = 2 37 k g . m / s
Chọn đáp án B
+ Vì v → 2 chếch lên trên, hợp với v → 1 góc 90 ° vuông góc
⇒ p = p 1 2 + p 2 2 = 8 2 + 6 2 = 10 k g . m / s
Chọn đáp án C
Câu 2: Một người kéo một thùng nước có khối lượng 15kg từ giếng sâu h=8m lên, chuyển động nhanh dần đều trong 4s. lấy \(g=10m/s^2\) Tính công và công suất của người đó.
_______________________________________________
\(h=\frac{1}{2}at^2\)
\(8=\frac{1}{2}a.4^2\)
\(a=1m/s\)
\(F-P=ma\)
\(F=ma+P=15.1+15.10=165N\)
\(A=Fs=165.8=20,625J\)
\(P=\frac{A}{t}=\frac{20,625}{4}=5,15625W\)
Vậy ............
Câu 1
\(p=\sqrt{p_1^2+P_2^2}=\sqrt{\left(1.3\right)^2+\left(4.1\right)^2}=5\)
Câu 2
\(m=15\left(kg\right)\)
\(h=S=8m\)
\(t=4s\)
\(g=10\left(\frac{m}{s^2}\right)\)
a. Tính A = ?
Quãng đường mà thùng nước đi được :
\(S=\frac{1}{2}at^2\rightarrow a=\frac{2S}{t^2}=\frac{2.8}{4^2}=1\left(\frac{m}{s^2}\right)\)
Theo định luật II Niuton ta có : vectoP + vectoF = m.vecto a
\(\rightarrow F=P+ma\)
\(\rightarrow F=mg+ma\)
\(\rightarrow F=15.10+15,1=165\left(N\right)\)
- Công của lực kéo tính theo công thức : \(A=F.S\)
\(\rightarrow A=F.S\)
\(\rightarrow A=165.8=1320\left(J\right)\)
b . Tính: P = ?
- Công suất của người ấy tính theo công thức : \(P=\frac{A}{t}\)
\(\rightarrow P=\frac{1320}{4}=330\left(W\right)\)
Bài 1 :
P1 =m1g => m1 = 1(kg)
P2 = m2g => m2 =1,5(kg)
Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v0, nên hệ vật có tổng động lượng : \(p_0=\left(m_1+m_2\right)v_0\)
Theo đl bảo toàn động lượng : \(p=p_0\Leftrightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v_0\)
=> \(v_1=\frac{\left(m_1+m_2\right)v_0-m_2v_2}{m_1}=\frac{\left(1+1,5\right).10-1,5.25}{1}=-12,5\left(m/s\right)\)
=> vận tốc v1 của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn.
Bài2;
Vận tốc mảnh nhỏ trước khi nổ là :
v02=\(v_1^2=2gh\)
=> v1 = \(\sqrt{v_0^2-2gh}=\sqrt{100^2-2.10.125}=50\sqrt{3}\left(m/s\right)\)
Theo định luật bảo toàn động lượng :
\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
p = mv = 5.50 =250(kg.m/s)
\(\left\{{}\begin{matrix}p_1=m_1v_1=2.50\sqrt{3}=100\sqrt{3}\left(kg.m/s\right)\\p_2=m_2v_2=3.v_2\left(kg.m/s\right)\end{matrix}\right.\)
+ Vì \(\overrightarrow{v_1}\perp\overrightarrow{v_2}\rightarrow\overrightarrow{p_1}\perp\overrightarrow{p_2}\)
=> p2 = \(\sqrt{p_1^2+p^2}=\sqrt{\left(100\sqrt{3}\right)^2+250^2}=50\sqrt{37}\left(kg.m/s\right)\)
=> v2= \(\frac{p_2}{m_2}=\frac{50\sqrt{37}}{3}\approx101,4m/s+sin\alpha=\frac{p_1}{p_2}=\frac{100\sqrt{3}}{50\sqrt{3}}\)
=> \(\alpha=34,72^o\)
+ Vì V 2 → cùng hướng với v → 1 ⇒ p → 1 , p → 2 cùng phương, ngược chiều
⇒ p = p 1 − p 2 = 8 − 6 = 2 k g . m / s
Chọn đáp án D
Ta có: p → = p → 1 + p → 2
+ p 1 = m 1 v 1 = 2.4 = 8 k g . m / s p 2 = m 2 v 2 = 3.2 = 6 k g . m / s
+ Vì v → 2 cùng hướng với v → 1 ⇒ p → 1 , p → 2 cùng phương, cùng chiều
⇒ p = p 1 + p 2 = 8 + 6 = 14 k g . m / s
Chọn đáp án A
+ Vì v → 2 hướng chếch lên trên hợp với v → 1 góc 90 ° nên p → 1 ; p → 2 vuông góc
⇒ p = p 1 2 + p 2 2 = 8 2 + 6 2 = 10 k g . m / s
Chọn đáp án C
Ta có:
p → = p → 1 + p → 2 v à p 1 = m 1 . v 1 = 2.4 = 8 ( k g . m / s ) ; p 2 = m 2 . v 2 = 3.2 = 6 ( k g . m / s )
a. Vì v → 2 cùng hướng với v 1 → ⇒ p → 1 , p → 2 cùng phương, cùng chiều
⇒ p = p 1 + p 2 = 8 + 6 = 14 ( k g . m / s )
b. Vì v → 2 ngược hướng với v 1 → ⇒ p → 1 , p → 2 cùng phương, ngược chiều
⇒ p = p 1 − p 2 = 8 − 6 = 2 ( k g . m / s )
c. Vì v → 2 hướng chếch lên trên, hợp với v 1 → góc 900 ⇒ p → 1 , p → 2 vuông góc
⇒ p = p 1 2 + p 2 2 = 8 2 + 6 2 = 10 ( k g . m / s )
d. Vì v → 2 hướng chếch lên trên, hợp với góc 600 ⇒ p → 1 , p → 2 tạo với nhau một góc 60 o
⇒ p 2 = p 1 2 + p 2 2 + 2 p 1 p 2 cos α ⇒ p = 8 2 + 6 2 + 2.8.6 cos 60 0 = 2 37 ( k g . m / s )