Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín. Vận tốc mảnh nhỏ trước khi nổ là
v 1 / 2 − v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h ⇒ v 1 = 100 2 − 2.10.125 = 50 3 ( m / s )
Theo định luật bảo toàn động lượng
p → = p → 1 + p → 2
Với
p = m v = ( 2 + 3 ) .50 = 250 ( k g m / s ) p 1 = m 1 v 1 = 2.50 3 = 100 3 ( k g m / s ) p 2 = m 2 v 2 = 3. v 2 ( k g m / s )
Vì v → 1 ⊥ v → ⇒ p → 1 ⊥ p → theo pitago
⇒ p 2 2 = p 1 2 + P 2 ⇒ p 2 = p 1 2 + p 2 = ( 100 3 ) 2 + 250 2 = 50 37 ( k g m / s )
⇒ v 2 = p 2 3 = 50 37 3 ≈ 101 , 4 ( m / s )
Mà sin α = p 1 p 2 = 100 3 50 37 ⇒ α = 34 , 72 0
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.
Vận tốc mảnh nhỏ trước khi nổ là:
v 1 / 2 = v 1 2 = 2 g h ⇒ v 1 = v 1 / 2 − 2 g h
⇒ v 1 = 100 2 − 2.10.125 = 50 3 m / s
+ Theo định luật bảo toàn động lượng: p → = p → 1 + p → 2
Với p = m v = 2 + 3 .50 = 250 k g . m / s
p 1 = m 1 v 1 = 2.50 3 = 100 3 k g . m / s p 2 = m 2 . v 2 = 3. v 2 k g . m / s
+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p → Theo pitago
p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 100 3 2 + 250 2 = 50 37 k g . m / s
⇒ v 2 = p 2 3 = 50 37 3 ≈ 101 , 4 m / s + sin α = p 1 p 2 = 100 3 50 37 ⇒ α = 34 , 72 0
Chọn đáp án B
Hệ vật gồm hai mảnh của quả lựu đạn là hệ cô lập, do không chịu tác dụng của ngoại lực, nên động lượng của hệ vật bảo toàn.
Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v 0 , nên hệ vật có tổng động lượng : p 0 = ( m 1 + m 2 ) v 0
Sau khi nổ, hệ vật có tổng động lượng : p = m 1 v 1 + m 2 v 2
Áp dụng định luật bảo toàn động lượng cho hệ vật, ta có
p = p 0 ⇒ m 1 v 1 + m 2 v 2 = ( m 1 + m 2 ) v 0
suy ra: (( m 1 + m 2 ) v 0 - m 2 v 2 )/ m 1
Thay số, ta tìm được :
v 1 = ( m 1 + m 2 ) v 0 - m 2 v 2 )/ m 1 = ((1 + 1,5).10 - 1,5.25)/1,0 = 12,5(m/s)
Dấu (-) chứng tỏ sau khi nổ, vận tốc v 1 của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn.
Khi đạn nổ lực tác dụng của không khí rất nhỏ so với nội lực nên được coi như là một hệ kín
Theo định luật bảo toàn động lượng: p → = p → 1 + p → 2
+ Với
p = m v = 5 + 15 .300 = 6000 k g . m / s p 1 = m 1 v 1 = 15.400 3 = 6000 3 k g . m / s p 2 = m 2 v 2 = 5. v 2 k g . m / s
+ Vì v → 1 ⊥ v → ⇒ p → 1 ⊥ p → theo Pitago p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2
⇒ p 2 = 6000 3 2 + 6000 2 = 12000 k g . m / s ⇒ v 2 = p 2 5 = 12000 5 = 2400 m / s
sin α = p 1 p 2 = 6000 3 12000 = 1 2 ⇒ α = 30 0
Chọn đáp án B
Khi đạn nổ lực tác dụng của không khí rất nhỏ so với nội lực nên được coi như là một hệ kín
Theo định luật bảo toàn động lượng p → = p → 1 + p → 2
Với p = m v = ( 5 + 15 ) .300 = 6000 ( k g m / s ) p 1 = m 1 v 1 = 15.400 3 = 6000 3 ( k g m / s ) p 2 = m 2 v 2 = 5. v 2 ( k g m / s )
Vì v → 1 ⊥ v → ⇒ p → 1 ⊥ p → theo pitago
p 2 2 = p 1 2 + P 2 ⇒ p 2 = p 1 2 + p 2 ⇒ p 2 = ( 6000 3 ) 2 + ( 6000 ) 2 = 12000 ( k g m / s ) ⇒ v 2 = p 2 5 = 12000 5 = 2400 ( m / s )
Mà sin α = p 1 p 2 = 6000 3 12000 = 1 2 ⇒ α = 30 0
Khi đến độ cao cực đại : v =0 => p=0
Bảo toàn động lượng trước và sau va chạm
\(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{0}\)
=> \(p_1=p_2\)
\(\Leftrightarrow\frac{m}{3}.20=\frac{2m}{3}.v_2\); \(m=\frac{m}{3}+\frac{2m}{3}\)
=> v2 = 10m/s
Ta có : \(v_2-v_2^2=2gh\)
=> \(0-10^2=2.10.h\)
=> h= 5m
Xe tiếp tục chuyển động theo chiều cũ với vận tốc 0,3m/s. Vì ngoại lực tác dụng lên hệ là trọng lực, rất nhỏ so với nội lực tương tác (lực làm vỡ viên đạn thành hai mảnh) nên động lượng của hệ ngay trước và sau khi đạn vỡ được bảo toàn.
Vậy, ngay sau khi vỡ, mảnh đạn thứ hai bay chếch lên, nghiêng góc 58,7° so với phương ngang với vận tốc 70m/s.
Bài 1 :
P1 =m1g => m1 = 1(kg)
P2 = m2g => m2 =1,5(kg)
Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v0, nên hệ vật có tổng động lượng : \(p_0=\left(m_1+m_2\right)v_0\)
Theo đl bảo toàn động lượng : \(p=p_0\Leftrightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v_0\)
=> \(v_1=\frac{\left(m_1+m_2\right)v_0-m_2v_2}{m_1}=\frac{\left(1+1,5\right).10-1,5.25}{1}=-12,5\left(m/s\right)\)
=> vận tốc v1 của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn.
Bài2;
Vận tốc mảnh nhỏ trước khi nổ là :
v02=\(v_1^2=2gh\)
=> v1 = \(\sqrt{v_0^2-2gh}=\sqrt{100^2-2.10.125}=50\sqrt{3}\left(m/s\right)\)
Theo định luật bảo toàn động lượng :
\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
p = mv = 5.50 =250(kg.m/s)
\(\left\{{}\begin{matrix}p_1=m_1v_1=2.50\sqrt{3}=100\sqrt{3}\left(kg.m/s\right)\\p_2=m_2v_2=3.v_2\left(kg.m/s\right)\end{matrix}\right.\)
+ Vì \(\overrightarrow{v_1}\perp\overrightarrow{v_2}\rightarrow\overrightarrow{p_1}\perp\overrightarrow{p_2}\)
=> p2 = \(\sqrt{p_1^2+p^2}=\sqrt{\left(100\sqrt{3}\right)^2+250^2}=50\sqrt{37}\left(kg.m/s\right)\)
=> v2= \(\frac{p_2}{m_2}=\frac{50\sqrt{37}}{3}\approx101,4m/s+sin\alpha=\frac{p_1}{p_2}=\frac{100\sqrt{3}}{50\sqrt{3}}\)
=> \(\alpha=34,72^o\)