) Cho một đường thẳng cắt hai đường thẳng song song. Khi đó số cặp góc đồng vị bằng nhau được...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

\(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=a^2+b^2+M\)

\(S_{ABCD}\)nhỏ nhất khi M nhỏ nhất

BĐT Cosi \(\left(S_{AOD}+S_{BOC}\right)^2\ge4\cdot S_{AOD}\cdot S_{BOC}\)

\(\Rightarrow\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge S_{AOD}\cdot S_{BOC}\)(*)

Dấu "=" khi và chỉ khi SAOD=SBOC

Vì \(\Delta\)AOD và \(\Delta\)AOB có chung đường cao kẻ từ A  => \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\left(1\right)\)

Tương tự với \(\Delta COD\)và \(\Delta COB\)=> \(\frac{S_{COB}}{S_{COD}}=\frac{OB}{OD}\left(2\right)\)

Từ (1) và (2) => \(\frac{S_{AOB}}{S_{AOD}}=\frac{S_{COB}}{S_{COD}}\)

\(\Rightarrow S_{AOD}\cdot S_{BOC}=S_{AOB}\cdot S_{COD}=a^2b^2\)

Khi đó (*) => \(\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge a^2b^2\Rightarrow\frac{S_{AOD}+S_{BOC}}{a}\ge2\left|a\right|\left|b\right|\)

\(\Rightarrow S_{ABCD}=a^2+b^2+M\ge a^2+b^2+2\left|a\right|\left|b\right|=\left(\left|a\right|+\left|b\right|\right)^2\)

Vậy SABCD nhỏ nhất =(|a|+|b|)2 <=> SAOD=SBOC

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau. 2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A3. Cho hình bình...
Đọc tiếp

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau.

 

2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A

3. Cho hình bình hành ABCD. Gọi d là đường thẳng qua A và không cắt đoạn thẳng BD. Gọi BB', CC', DD' lần lượt là khoảng cách từ B, C, D đến đường thẳng d (B', C', D' thuộc d). Chứng minh rằng BB' + DD' = CC'

4. Gọi P là trung điểm thuộc cạnh BC (PB khác PC), N là trung điểm của cạnh CD, Q là điểm thuộc cạnh AD (QA khác QD). Biết MNPQ là hình bình hành .CMR: 

giúp mk vs mk đg cần gấp

2

\(3.\)

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành nên O là trung điểm của AC và BD

Vẽ \(OO'\perp d;O'\in d\)

Các đường thẳng \(BB';CC';DD';OO'\)song song với nhau vì cùng vuông góc với đường thẳng d

\(B'D'DB\)là hình thang (Vì \(BB'//DD'\)) có: \(OB=OD;OO'//BB'\)nên \(OO'\)là đường trung bình của hình thang \(B'D'DB\)\(OO'=\frac{1}{2}\left(BB'+DD'\right)\)(*)

Mặt khác \(\Delta ACC'\)\(OO'//CC';OA=OC\)

Nên OO' là đường trung bình của \(\Delta ACC'\)\(OO'=\frac{1}{2}CC'\)(**)

Từ (*) và (**) \(\Rightarrow BB'+DD'=CC'\)

O B' B A O' C' d D' C D

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng1/ Trong các hình sau, hình không có tâm đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi2/ Trong các hình sau, hình không có trục đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ...
Đọc tiếp

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I

 

I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng

1/ Trong các hình sau, hình không có tâm đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

2/ Trong các hình sau, hình không có trục đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ dài đường trung bình của hình thang đó là:

A . 10cm B . 5cm C . √10 cm D . √5cm

4/ Tứ giác có hai cạnh đối song song và hai đường chéo bằng nhau là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình chữ nhật

5/ Một hình thang có một cặp góc đối là: 1250 và 650. Cặp góc đối còn lại của hình thang đó là:

A . 1050 ; 450 B . 1050 ; 650

C . 1150 ; 550 D . 1150 ; 650

6/ Cho tứ giác ABCD, có ∠A = 800; ∠B =1200, ∠D = 500. Số đo góc C là?

A. 1000 , B. 1500, C. 1100, D. 1150

7/ Góc kề 1 cạnh bên hình thang có số đo 750, góc kề còn lại của cạnh bên đó là:

A. 850 B. 950 C. 1050 D. 1150

8/ Độ dài hai đường chéo hình thoi là 16 cm và 12 cm. Độ dài cạnh của hình thoi đó là:

A 7cm, B. 8cm, C. 9cm, D. 10 cm

II/TỰ LUẬN (8đ)

Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân.

Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I.

a) Tứ giác AEGF là hình gì ?

b) Chứng minh tứ giac BEIF là hình bình hành

c) Chứng minh tứ giác AGCI là hình thoi

d) Tìm điều kiện để tứ giác AGCI là hình vuông.

1

Bài 1: 

Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

MF//AB

DO đó: F là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC
Do đó: EF là đường trung bình

=>EF//BC

hay BEFC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BEFC là hình thang cân