Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình vuông cạnh c là \(S=c^2\)
Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)
Xét tg vuông có \(c^2=a^2+b^2\)
Áp dụng cosi có
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)
\(\Rightarrow S\ge S_1\left(dpcm\right)\)
\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân
Khi quay hình chữ nhật quanh cạnh BC:
Stp trụ = 2π.AB.AD + 2π. A B 2 = S 1
Khi quay cạnh CD: Stp trụ = 2π.AB.AD + 2π. B C 2 = S 2
Mặt khác: S 1 = S 2 <=> 2π.AB.AD + 2π. A B 2 = 2π.AB.AD + 2π. B C 2
<=> AB = BC => ABCD là hình vuông
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Giải
Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần chứng minh: \(S_{FGH}=\frac{1}{2}S_{ABCD}\)
\(S_{FGH}=S_{FAD}-S_{FAG}-S_{FDH}-S_{AGD}-S_{DGH}\)
\(=S_{AFD}-\frac{1}{2}\left(S_{FAC}+S_{FBD}\right)-\frac{1}{2}S_{ACD}-\frac{1}{2}S_{DGB}\)
\(=S_{ACD}+S_{ABC}+S_{FBC}-\frac{1}{2}\left(S_{ABC}+S_{FBC}+S_{DBC}+S_{FBC}\right)-\frac{1}{2}S_{ACD}\)
\(-\frac{1}{2}\left(S_{ACD}+S_{ABC}-S_{ADG}-S_{ABG}-S_{DBC}\right)\)
\(=\frac{1}{2}\left(S_{ADG}+S_{ABG}\right)=\frac{1}{2}.\frac{1}{2}\left(S_{ACD}+S_{ABC}\right)=\frac{1}{4}S_{ABCD}\left(đpcm\right)\)
Giải
Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần chứng minh: SFGH=12 SABCD
SFGH=SFAD−SFAG−SFDH−SAGD−SDGH
=SAFD−12 (SFAC+SFBD)−12 SACD−12 SDGB
=SACD+SABC+SFBC−12 (SABC+SFBC+SDBC+SFBC)−12 SACD
−12 (SACD+SABC−SADG−SABG−SDBC)
=12 (SADG+SABG)=12 .12 (SACD+SABC)=14 SABCD(đpcm)